Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(10): 103001, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784142

RESUMO

Accurate nuclear quadrupole moment values are essential as benchmarks for nuclear structure models and for the interpretation of experimentally determined nuclear quadrupole interactions in terms of electronic and molecular structure. Here, we present a novel route to such data by combining perturbed γ-γ angular correlation measurements on free small linear molecules, realized for the first time within this work, with state-of-the-art ab initio electronic structure calculations of the electric field gradient at the probe site. This approach, also feasible for a series of other cases, is applied to Hg and Cd halides, resulting in Q(^{199}Hg,5/2^{-})=+0.674(17) b and Q(^{111}Cd,5/2^{+})=+0.664(7) b.

2.
J Chem Phys ; 149(4): 044117, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30068157

RESUMO

The pcJ-n basis set, optimized for spin-spin coupling constant calculations using density functional theory methods, are expanded to also include the s-block elements Li, Be, Na, and Mg, by studying several small molecules containing these elements. This is done by decontracting the underlying pc-n basis sets, followed by augmentation with additional tight functions. As was the case for the p-block elements, the convergence of the results can be significantly improved by augmentation with tight s-functions. For the p-block elements, additional tight functions of higher angular momentum were also needed, but this is not the case for the s-block elements. A search for the optimum contraction scheme is carried out using the criterion that the contraction error should be lower than the inherent error of the uncontracted pcJ-n relative to the uncontracted pcJ-4 basis set. A large search over possible contraction schemes is done for the Li2 and Na2 molecules, and based on this search contracted pcJ-n basis sets for the four atoms are recommended. This work shows that it is more difficult to contract the pcJ-n basis sets, than the underlying pc-n basis sets. However, it also shows that the pcJ-n basis sets for Li and Be can be more strongly contracted than the pcJ-n basis sets for the p-block elements. For Na and Mg, the contractions are to the same degree as for the p-block elements.

3.
J Chem Theory Comput ; 20(3): 1228-1243, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38299500

RESUMO

Traditional nuclear magnetic resonance (NMR) calculations typically treat systems with a Born-Oppenheimer-derived electronic wave function that is solved for a fixed nuclear geometry. One can numerically account for this neglected nuclear motion by averaging over property values for all nuclear geometries with a vibrational wave function and adding this expectation value as a correction to an equilibrium geometry property value. Presented are benchmark coupled-cluster singles and doubles (CCSD) vibrational corrections to spin-spin coupling constants (SSCCs) computed at the level of vibrational second-order perturbation theory (VPT2) using the vibrational averaging driver of the CFOUR program. As CCSD calculations of vibrational corrections are very costly, cheaper electronic structure methods are explored via a newly developed Python vibrational averaging program within the Dalton Project. Namely, results obtained with the second-order polarization propagator approximation (SOPPA) and density functional theory (DFT) with the B3LYP and PBE0 exchange-correlation functionals are compared to the benchmark CCSD//CCSD(T) and experimental values. CCSD//CCSD(T) corrections are also combined with literature CC3 equilibrium geometry values to form the highest-order vibrationally corrected values available (i.e., CC3//CCSD(T) + CCSD//CCSD(T)). CCSD//CCSD(T) statistics showed favorable statistics in comparison to experimental values, albeit at an unfavorably high computational cost. A cheaper CCSD//CCSD(T) + B3LYP method showed quite similar mean absolute deviation (MAD) values as CCSD//CCSD(T), concluding that CCSD//CCSD(T) + B3LYP is optimal in terms of cost and accuracy. With reference to experimental values, a vibrational correction was not worth the cost for all of the other methods tested. Finally, deviation statistics showed that CC3//CCSD(T) + CCSD//CCSD(T) vibrational-corrected equilibrium values deteriorated in comparison to CCSD//CCSD(T) attributed to the use of a smaller basis set or lack of solvation effects for the CC3 equilibrium calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA