Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Cell Physiol ; 239(5): e31229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426269

RESUMO

RNA-binding proteins (RBPs) play a crucial role in the regulation of posttranscriptional RNA networks, which can undergo dysregulation in many pathological conditions. Human antigen R (HuR) is a highly researched RBP that plays a crucial role as a posttranscriptional regulator. HuR plays a crucial role in the amplification of inflammatory signals by stabilizing the messenger RNA of diverse inflammatory mediators and key molecular players. The noteworthy correlations between HuR and its target molecules, coupled with the remarkable impacts reported on the pathogenesis and advancement of multiple diseases, position HuR as a promising candidate for therapeutic intervention in diverse inflammatory conditions. This review article examines the significance of HuR as a member of the RBP family, its regulatory mechanisms, and its implications in the pathophysiology of inflammation and cardiometabolic illnesses. Our objective is to illuminate potential directions for future research and drug development by conducting a comprehensive analysis of the existing body of research on HuR.


Assuntos
Doenças Cardiovasculares , Proteína Semelhante a ELAV 1 , Inflamação , Humanos , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Inflamação/genética , Inflamação/patologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Animais , Regulação da Expressão Gênica , Doenças Metabólicas/genética , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Transdução de Sinais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Microb Pathog ; 194: 106777, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39002657

RESUMO

Francisella tularensis can cause severe disease in humans via the respiratory or cutaneous routes and a case fatality ratio of up to 10 % is reported due to lack of proper antibiotic treatment, while F. novicida causes disease in severely immunocompromised individuals. Efforts are needed to develop effective vaccine candidates against Francisella species. Thus, in this study, a systematic computational work frame was used to deeply investigate the whole proteome of Francisella novicida containing 1728 proteins to develop vaccine against F. tularensis and related species. Whole-proteome analysis revealed that four proteins including (A0Q492) (A0Q7Y4), (A0Q4N4), and (A0Q5D9) are the suitable vaccine targets after the removal of homologous, paralogous and prediction of subcellular localization. These proteins were used to predict the T cell, B cell, and HTL epitopes which were joined together through suitable linkers to construct a multi-epitopes vaccine (MEVC). The MEVC was found to be highly immunogenic and non-allergenic while the physiochemical properties revealed the feasible expression and purification. Moreover, the molecular interaction of MEVC with TLR2, molecular simulation, and binding free energy analyses further validated the immune potential of the construct. According to Jcat analysis, the refined sequence demonstrates GC contents of 41.48 % and a CAI value of 1. The in-silico cloning and optimization process ensured compatibility with host codon usage, thereby facilitating efficient expression. Computational immune simulation studies underscored the capacity of MEVC to induce both primary and secondary immune responses. The conservation analysis further revealed that the selected epitopes exhibit 100 % conservation across different species and thus provides wider protection against Francisella.

3.
Semin Cancer Biol ; 83: 177-196, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-32877761

RESUMO

Compelling evidence has demonstrated that tumor bulk comprises distinctive subset of cells generally referred as cancer stem cells (CSCs) that have been proposed as a strong sustainer and promoter of tumorigenesis and therapeutic resistance. These distinguished properties of CSCs have raised interest in understanding the molecular mechanisms that govern the maintenance of these cells. Numerous experimental and epidemiological studies have demonstrated that exposure to environmental toxins such as the polycyclic aromatic hydrocarbons (PAHs) is strongly involved in cancer initiation and progression. The PAH-induced carcinogenesis is shown to be mediated through the activation of a cytosolic receptor, aryl hydrocarbon receptor (AhR)/Cytochrome P4501A pathway, suggesting a possible direct link between AhR and CSCs. Several recent studies have investigated the role of AhR in CSCs self-renewal and maintenance, however the molecular mechanisms and particularly the epigenetic regulations of CSCs by the AhR/CYP1A pathway have not been reviewed before. In this review, we first summarize the crosstalk between AhR and cancer genetics, with a particular emphasis on the mechanisms relevant to CSCs such as Wnt/ß-catenin, Notch, NF-κB, and PTEN-PI3K/Akt signaling pathways. The second part of this review discusses the recent advances and studies highlighting the epigenetic mechanisms mediated by the AhR/CYP1A pathway that control CSC gene expression, self-renewal, and chemoresistance in various human cancers. Furthermore, the review also sheds light on the importance of targeting the epigenetic pathways as a novel therapeutic approach against CSCs.


Assuntos
Neoplasias , Receptores de Hidrocarboneto Arílico , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Epigênese Genética , Humanos , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902310

RESUMO

A timely and adequate response to stress is inherently present in each cell and is important for maintaining the proper functioning of the cell in changing intracellular and extracellular environments. Disruptions in the functioning or coordination of defense mechanisms against cellular stress can reduce the tolerance of cells to stress and lead to the development of various pathologies. Aging also reduces the effectiveness of these defense mechanisms and results in the accumulation of cellular lesions leading to senescence or death of the cells. Endothelial cells and cardiomyocytes are particularly exposed to changing environments. Pathologies related to metabolism and dynamics of caloric intake, hemodynamics, and oxygenation, such as diabetes, hypertension, and atherosclerosis, can overwhelm endothelial cells and cardiomyocytes with cellular stress to produce cardiovascular disease. The ability to cope with stress depends on the expression of endogenous stress-inducible molecules. Sestrin2 (SESN2) is an evolutionary conserved stress-inducible cytoprotective protein whose expression is increased in response to and defend against different types of cellular stress. SESN2 fights back the stress by increasing the supply of antioxidants, temporarily holding the stressful anabolic reactions, and increasing autophagy while maintaining the growth factor and insulin signaling. If the stress and the damage are beyond repair, SESN2 can serve as a safety valve to signal apoptosis. The expression of SESN2 decreases with age and its levels are associated with cardiovascular disease and many age-related pathologies. Maintaining sufficient levels or activity of SESN2 can in principle prevent the cardiovascular system from aging and disease.


Assuntos
Doenças Cardiovasculares , Humanos , Células Endoteliais , Transdução de Sinais , Envelhecimento , Apoptose , Sestrinas
5.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175541

RESUMO

Healthy non-obese insulin resistant (IR) individuals are at higher risk of metabolic syndrome. The metabolic signature of the increased risk was previously determined. Physical activity can lower the risk of insulin resistance, but the underlying metabolic pathways remain to be determined. In this study, the common and unique metabolic signatures of insulin sensitive (IS) and IR individuals in active and sedentary individuals were determined. Data from 305 young, aged 20-30, non-obese participants from Qatar biobank, were analyzed. The homeostatic model assessment of insulin resistance (HOMA-IR) and physical activity questionnaires were utilized to classify participants into four groups: Active Insulin Sensitive (ISA, n = 30), Active Insulin Resistant (IRA, n = 20), Sedentary Insulin Sensitive (ISS, n = 21) and Sedentary Insulin Resistant (SIR, n = 23). Differences in the levels of 1000 metabolites between insulin sensitive and insulin resistant individuals in both active and sedentary groups were compared using orthogonal partial least square discriminate analysis (OPLS-DA) and linear models. The study indicated significant differences in fatty acids between individuals with insulin sensitivity and insulin resistance who engaged in physical activity, including monohydroxy, dicarboxylate, medium and long chain, mono and polyunsaturated fatty acids. On the other hand, the sedentary group showed changes in carbohydrates, specifically glucose and pyruvate. Both groups exhibited alterations in 1-carboxyethylphenylalanine. The study revealed different metabolic signature in insulin resistant individuals depending on their physical activity status. Specifically, the active group showed changes in lipid metabolism, while the sedentary group showed alterations in glucose metabolism. These metabolic discrepancies demonstrate the beneficial impact of moderate physical activity on high risk insulin resistant healthy non-obese individuals by flipping their metabolic pathways from glucose based to fat based, ultimately leading to improved health outcomes. The results of this study carry significant implications for the prevention and treatment of metabolic syndrome in non-obese individuals.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Humanos , Insulina/metabolismo , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Insulina Regular Humana , Exercício Físico , Glucose , Glicemia/metabolismo
6.
Cell Mol Biol Lett ; 27(1): 103, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418969

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor that mediates the toxicities of several environmental pollutants. Decades of research have been carried out to understand the role of AhR as a novel mechanism for disease development. Its involvement in the pathogenesis of cancer, cardiovascular diseases, rheumatoid arthritis, and systemic lupus erythematosus have long been known. One of the current hot research topics is investigating the role of AhR activation by environmental pollutants on glucose homeostasis and insulin secretion, and hence the pathogenesis of diabetes mellitus. To date, epidemiological studies have suggested that persistent exposure to environmental contaminants such as dioxins, with subsequent AhR activation increases the risk of specific comorbidities such as obesity and diabetes. The importance of AhR signaling in various molecular pathways highlights that the role of this receptor is far beyond just xenobiotic metabolism. The present review aims at providing significant insight into the physiological and pathological role of AhR and its regulated enzymes, such as cytochrome P450 1A1 (CYP1A1) and CYP1B1 in both types of diabetes. It also provides a comprehensive summary of the current findings of recent research studies investigating the role of the AhR/CYP1A1 pathway in insulin secretion and glucose hemostasis in the pancreas, liver, and adipose tissues. This review further highlights the molecular mechanisms involved, such as gluconeogenesis, hypoxia-inducible factor (HIF), oxidative stress, and inflammation.


Assuntos
Diabetes Mellitus , Poluentes Ambientais , Resistência à Insulina , Humanos , Receptores de Hidrocarboneto Arílico/genética , Citocromo P-450 CYP1A1 , Glucose , Homeostase
7.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232443

RESUMO

Impaired adipogenesis is associated with the development of insulin resistance and an increased risk of type 2 diabetes (T2D). GATA Binding Protein 3 (GATA3) is implicated in impaired adipogenesis and the onset of insulin resistance. Therefore, we hypothesize that inhibition of GATA3 could promote adipogenesis, restore healthy fat distribution, and enhance insulin signaling. Primary human preadipocytes were treated with GATA3 inhibitor (DNAzyme hgd40). Cell proliferation, adipogenic capacity, gene expression, and insulin signaling were measured following well-established protocols. BALB/c mice were treated with DNAzyme hgd40 over a period of 2 weeks. Liposomes loaded with DNAzyme hgd40, pioglitazone (positive), or vehicle (negative) controls were administered subcutaneously every 2 days at the right thigh. At the end of the study, adipose tissues were collected and weighed from the site of injection, the opposite side, and the omental depot. Antioxidant enzyme (superoxide dismutase and catalase) activities were assessed in animals' sera, and gene expression was measured using well-established protocols. In vitro GATA3 inhibition induced the adipogenesis of primary human preadipocytes and enhanced insulin signaling through the reduced expression of p70S6K. In vivo GATA3 inhibition promoted adipogenesis at the site of injection and reduced MCP-1 expression. GATA3 inhibition also reduced omental tissue size and PPARγ expression. These findings suggest that modulating GATA3 expression offers a potential therapeutic benefit by correcting impaired adipogenesis, promoting healthy fat distribution, improving insulin sensitivity, and potentially lowering the risk of T2D.


Assuntos
DNA Catalítico , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adipogenia/genética , Animais , Antioxidantes/uso terapêutico , Catalase , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/uso terapêutico , Resistência à Insulina/genética , Lipossomos/uso terapêutico , Camundongos , Obesidade/metabolismo , PPAR gama/metabolismo , Pioglitazona/uso terapêutico , Proteínas Quinases S6 Ribossômicas 70-kDa , Superóxido Dismutase
8.
J Cell Physiol ; 236(6): 4348-4359, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33241572

RESUMO

Selenium is an essential trace element important for human health. A balanced intake is, however, crucial to maximize the health benefits of selenium. At physiological concentrations, selenium mediates antioxidant, anti-inflammatory, and pro-survival actions. However, supra-nutritional selenium intake was associated with increased diabetes risk leading potentially to endothelial dysfunction, the initiating step in atherosclerosis. High selenium causes apoptosis in cancer cells via endoplasmic reticulum (ER) stress, a mechanism also implicated in endothelial dysfunction. Nonetheless, whether ER stress drives selenium-induced endothelial dysfunction, remains unknown. Here, we investigated the effects of increasing concentrations of selenium on endothelial cells. High selenite reduced nitric oxide bioavailability and impaired angiogenesis. High selenite also induced ER stress, increased reactive oxygen species (ROS) production, and apoptosis. Pretreatment with the chemical chaperone, 4-phenylbutyrate, prevented the toxic effects of selenium. Our findings support a model where high selenite leads to endothelial dysfunction through activation of ER stress and increased ROS production. These results highlight the importance of tailoring selenium supplementation to achieve maximal health benefits and suggest that prophylactic use of selenium supplements as antioxidants may entail risk.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Selenito de Sódio/toxicidade , Linhagem Celular , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico/metabolismo
9.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502168

RESUMO

Autism spectrum disorder (ASD) is an umbrella term that includes many different disorders that affect the development, communication, and behavior of an individual. Prevalence of ASD has risen exponentially in the past couple of decades. ASD has a complex etiology and traditionally recognized risk factors only account for a small percentage of incidence of the disorder. Recent studies have examined factors beyond the conventional risk factors (e.g., environmental pollution). There has been an increase in air pollution since the beginning of industrialization. Most environmental pollutants cause toxicities through activation of several cellular receptors, such as the aryl hydrocarbon receptor (AhR)/cytochrome P450 (CYPs) pathway. There is little research on the involvement of AhR in contributing to ASD. Although a few reviews have discussed and addressed the link between increased prevalence of ASD and exposure to environmental pollutants, the mechanism governing this effect, specifically the role of AhR in ASD development and the molecular mechanisms involved, have not been discussed or reviewed before. This article reviews the state of knowledge regarding the impact of the AhR/CYP pathway modulation upon exposure to environmental pollutants on ASD risk, incidence, and development. It also explores the molecular mechanisms involved, such as epigenesis and polymorphism. In addition, the review explores possible new AhR-mediated mechanisms of several drugs used for treatment of ASD, such as sulforaphane, resveratrol, haloperidol, and metformin.


Assuntos
Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/metabolismo , Suscetibilidade a Doenças , Poluentes Ambientais/efeitos adversos , Receptores de Hidrocarboneto Arílico/metabolismo , Poluição do Ar/efeitos adversos , Animais , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/psicologia , Biomarcadores , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Modelos Animais de Doenças , Exposição Ambiental/efeitos adversos , Poluição Ambiental/efeitos adversos , Epigênese Genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais
10.
Environ Monit Assess ; 194(1): 22, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34904198

RESUMO

Public perception of drinking water quality and safety results from the interaction of multiple factors, including the public engagement, which requires sufficient knowledge and awareness. This issue has yet to be addressed in Algeria. This study investigated the residents' perception and awareness about the drinking water quality, safety, and water pollution events. A survey-based cross-sectional study was conducted amongst citizens living in the province of Biskra. Multinomial regression analysis was used to identify the predicted public perception factors about drinking water-related issues. Regardless of the degree of public trust in the drinking water sources, the main drinking water source reported by the participants was tank water (43.3%) followed by tap water (32%). Water quality standards are a measure of the condition of water relative to the contaminants. Water consumption profiles gave priority attention to taste (48.7%), odour (35%), appearance (34.7%), and colour (32%), reflecting a low level of knowledge about the water quality standards. Most of the residents (55.7%) reported a deficient communication about the preventive measures to protect public health. The higher level of education showed a statistically significant impact in discriminating between those who felt very satisfied and dissatisfied participants with the drinking water quality and those who felt between satisfied and dissatisfied (P = 0.023, P = 0.034, respectively). Additionally, education level had a statistically significant role in differentiating trust levels in drinking water quality between two groups, those belonging to either confident or relatively confident and the group of extremely worried respondents, with P = 0.000 and P = 0.000, respectively. Interviewed respondents with certain education levels showed higher trust in the safety of drinking water when compared to those with lower education levels. Gender had a significant role in differentiating the group of respondents who were relatively confident from those who were extremely worried (P = 0.016). The public knowledge about the standards of water quality, safety, and the pollution-related issues remains relatively low. This study is of interest to policy makers and public health authorities who implement actions for water contamination prevention and public health protection. These findings could have national implications and are also applicable, in general context, particularly in low and middle-income countries.


Assuntos
Água Potável , Estudos Transversais , Monitoramento Ambiental , Humanos , Percepção , Poluição da Água , Qualidade da Água , Abastecimento de Água
11.
Chem Res Toxicol ; 33(7): 1719-1728, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32370496

RESUMO

Gefitinib (GEF) is a selective inhibitor of the epidermal growth factor receptor (EGFR) used to treat non-small cell lung cancer. Yet, few cases of cardiotoxicity have been reported. However, the role of the PTEN/Akt/FoxO3a pathway, which mediates GEF anticancer activity, in GEF cardiotoxicity remains unclear. For this purpose, in vitro H9c2 cells and in vivo rat cardiomyocytes were utilized as study models. Treatment of H9c2 cells and Sprague-Dawley rats with GEF significantly induced the expression of hypertrophic and apoptotic markers at mRNA and protein levels with an increased plasma level of troponin. This was accompanied by induction of autophagy and mitochondrial dysfunction in H9c2 cells. Inhibition of cardiac EGFR activity and Akt cellular content of in vitro and in vivo rat cardiomyocytes by GEF increased PTEN and FoxO3a gene expression and cellular content. Importantly, treatment of H9c2 cells with PI3K/Akt inhibitor increased PTEN and FoxO3a mRNA expression associated with potentiation of GEF cardiotoxicity. In addition, by using LC-MS/MS, we showed that GEF is metabolized in the rat heart microsomes into one cyanide- and two methoxylamine-adduct reactive metabolites, where their formation was entirely blocked by CYP1A1 inhibitor, α-naphthoflavone. The current study concludes that GEF induces cardiotoxicity through modulating the expression and function of the cardiac PTEN/AKT/FoxO3a pathway and the formation of CYP1A1-mediated reactive metabolites.


Assuntos
Antineoplásicos/efeitos adversos , Cardiotoxicidade/metabolismo , Receptores ErbB/antagonistas & inibidores , Proteína Forkhead Box O3/metabolismo , Gefitinibe/efeitos adversos , PTEN Fosfo-Hidrolase/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Cardiotoxicidade/genética , Linhagem Celular , Receptores ErbB/metabolismo , Proteína Forkhead Box O3/genética , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microssomos/metabolismo , Miocárdio/metabolismo , PTEN Fosfo-Hidrolase/genética , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
12.
J Cell Physiol ; 234(10): 16739-16754, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30912147

RESUMO

Stroke is one of the leading causes of mortality and disability worldwide. Numerous pathophysiological mechanisms involving blood vessels, coagulation and inflammation contribute to the vascular occlusion. Perturbations in these pathways can be detected by numerous methods including changes in endoplasmic membrane remodeling and rearrangement leading to the shedding of microparticles (MPs) from various cellular origins in the blood. MPs are small membrane-derived vesicles that are shed from nearly all cells in the body in resting state or upon stimulation. MPs act as biological messengers to transfer information to adjacent and distant cells thus regulating various biological processes. MPs may be important biomarkers and tools for the identification of the risk and diagnosis of cerebrovascular diseases. Endothelial activation and dysfunction and altered thrombotic responses are two of the main features predisposing to stroke. Endothelial MPs (EMPs) have been recognized as both biomarkers and effectors of endothelial cell activation and injury while platelet-derived MPs (PMPs) carry a strong procoagulant potential and are activated in thrombotic states. Therefore, we reviewed here the role of EMPs and PMPs as biomarkers of stroke. Most studies reported high circulating levels of EMPs and PMPs in addition to other cell origins in stroke patients and have been linked to stroke severity, the size of infarction, and prognosis. The identification and quantification of EMPs and PMPs may thus be useful for the diagnosis and management of stroke.


Assuntos
Plaquetas , Micropartículas Derivadas de Células , Acidente Vascular Cerebral/sangue , Biomarcadores/sangue , Humanos , Acidente Vascular Cerebral/diagnóstico
13.
Int J Mol Sci ; 20(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987118

RESUMO

Physical inactivity and sedentary lifestyle contribute to the widespread epidemic of obesity among both adults and children leading to rising cases of diabetes. Cardiovascular disease complications associated with obesity and diabetes are closely linked to insulin resistance and its complex implications on vascular cells particularly endothelial cells. Endoplasmic reticulum (ER) stress is activated following disruption in post-translational protein folding and maturation within the ER in metabolic conditions characterized by heavy demand on protein synthesis, such as obesity and diabetes. ER stress has gained much interest as a key bridging and converging molecular link between insulin resistance, oxidative stress, and endothelial cell dysfunction and, hence, represents an interesting drug target for diabetes and its cardiovascular complications. We reviewed here the role of ER stress in endothelial cell dysfunction, the primary step in the onset of atherosclerosis and cardiovascular disease. We specifically focused on the contribution of oxidative stress, insulin resistance, endothelial cell death, and cellular inflammation caused by ER stress in endothelial cell dysfunction and the process of atherogenesis.


Assuntos
Doenças Cardiovasculares/patologia , Diabetes Mellitus/patologia , Estresse do Retículo Endoplasmático , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Animais , Humanos , Modelos Biológicos , Resposta a Proteínas não Dobradas
14.
Biomol Biomed ; 24(2): 230-237, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38231530

RESUMO

Advanced ovarian cancer is a malignancy that spreads beyond the ovaries to the pelvis, abdomen, lungs, or lymph nodes. Effective treatment options are available to improve survival rates in patients with advanced ovarian cancer. These include radiation, surgery, chemotherapy, immunotherapy, and targeted therapy. Drug resistance, however, remains a significant challenge in pharmacotherapeutic interventions, leading to reduced efficacy and unfavorable patient outcomes. Combination therapy, which involves using multiple drugs with different mechanisms of action at their optimal dose, is a promising approach to circumvent this challenge and it involves using multiple drugs with different mechanisms of action at their optimal dose. In recent years, nanotechnology has emerged as a valuable alternative for enhancing drug delivery precision and minimize toxicity. Nanoparticles can deliver drugs to specific cancer cells, resulting in higher drug concentrations at the tumor site, and reducing overall drug toxicity. Nanotechnology-based drug delivery systems have the potential to improve the therapeutic effects of anti-cancer drugs, reduce drug resistance, and improve outcomes for patients with advanced ovarian cancer. This literature review aims to examine the current understanding of combining poly (ADP-ribose) polymerase (PARP) inhibitors and immunotherapy in treating advanced ovarian cancer and the potential impact of nanotechnology on drug delivery.


Assuntos
Neoplasias dos Genitais Masculinos , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias dos Genitais Masculinos/tratamento farmacológico , Imunoterapia
15.
Front Immunol ; 15: 1357342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524133

RESUMO

Introduction: Diabetes mellitus (DM) is recognized as one of the oldest chronic diseases and has become a significant public health issue, necessitating innovative therapeutic strategies to enhance patient outcomes. Traditional treatments have provided limited success, highlighting the need for novel approaches in managing this complex disease. Methods: In our study, we employed graph signature-based methodologies in conjunction with molecular simulation and free energy calculations. The objective was to engineer the CA33 monoclonal antibody for effective targeting of the aP2 antigen, aiming to elicit a potent immune response. This approach involved screening a mutational landscape comprising 57 mutants to identify modifications that yield significant enhancements in binding efficacy and stability. Results: Analysis of the mutational landscape revealed that only five substitutions resulted in noteworthy improvements. Among these, mutations T94M, A96E, A96Q, and T94W were identified through molecular docking experiments to exhibit higher docking scores compared to the wild-type. Further validation was provided by calculating the dissociation constant (KD), which showed a similar trend in favor of these mutations. Molecular simulation analyses highlighted T94M as the most stable complex, with reduced internal fluctuations upon binding. Principal components analysis (PCA) indicated that both the wild-type and T94M mutant displayed similar patterns of constrained and restricted motion across principal components. The free energy landscape analysis underscored a single metastable state for all complexes, indicating limited structural variability and potential for high therapeutic efficacy against aP2. Total binding free energy (TBE) calculations further supported the superior performance of the T94M mutation, with TBE values demonstrating the enhanced binding affinity of selected mutants over the wild-type. Discussion: Our findings suggest that the T94M substitution, along with other identified mutations, significantly enhances the therapeutic potential of the CA33 antibody against DM by improving its binding affinity and stability. These results not only contribute to a deeper understanding of antibody-antigen interactions in the context of DM but also provide a valuable framework for the rational design of antibodies aimed at targeting this disease more effectively.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Simulação de Acoplamento Molecular , Modelos Moleculares , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Anticorpos Monoclonais , Imunidade Adaptativa
16.
J Pain Res ; 17: 2267-2278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947132

RESUMO

Background & Objective: Chronic peripheral neuropathic pain (PNP) is a debilitating condition that is associated with many types of injury/diseases, including diabetes mellitus. Patients with longstanding diabetes develop diabetic PNP (DPNP), which is resilient to currently available drugs. The underlying molecular mechanisms of DPNP are still illusive, but Kv7 channels that have been implicated in the pathogenesis of various types of chronic pain are likely to be involved. Indeed, using the streptozotocin (STZ) rat model of DPNP, we have previously shown that Kv7 activation with their non-selective activator retigabine attenuated neuropathic pain behavior suggesting that these channels are implicated in DPNP pathogenesis. Here, we evaluated, in the same STZ model, whether the more potent and more selective Kv7 channel openers flupirtine and ML213 attenuate STZ-induced pain hypersensitivity. Methods: Male Sprague Dawley rats (250-300 g) were used. The STZ model involved a single injection of STZ (60 mg/kg, i.p.). Behavioral testing for mechanical and heat pain sensitivity was performed using a dynamic plantar aesthesiometer and Hargreaves analgesiometer, respectively. Results: STZ rats exhibited behavioral signs of mechanical and heat hypersensitivity as indicated by significant decreases in the mean paw withdrawal threshold (PWT) and mean paw withdrawal latency (PWL), respectively, at 35 days post-STZ treatment. Single injections of flupirtine (10 mg/kg, i.p.) and ML213 (5 mg/kg, i.p.) to STZ rats (35-days after STZ treatment) caused significant increases in the mean PWT, but not PWL, indicating attenuation of mechanical, but not heat hypersensitivity. Both flupirtine and ML213 were as effective as the positive control gabapentin (10/kg, i.p.), and their anti-allodynic effects were prevented by the Kv7 channel-specific blocker XE991 (3 mg/kg, i.p.). Conclusion: The findings suggest that Kv7 channels are involved in the mechanisms of mechanical but not heat hypersensitivity associated with DPNP, and that their activation may prove to be effective in alleviating DPNP symptoms.

17.
J Biomol Struct Dyn ; : 1-13, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686915

RESUMO

Leucine is the native known ligand of Sestrin2 (Sesn2) and its interaction with Sesn2 is particularly important, as it influences the activity of mTOR in aging and its associated pathologies. It is important to find out how leucine interacts with Sesn2 and how mutations in the binding pocket of leucine affect the binding of leucine. Therefore, this study was committed to investigating the impact of non-synonymous mutations by incorporating a broad spectrum of simulation techniques, from molecular dynamics to free energy calculations. Our study was designed to model the atomic-scale interactions between leucine and mutant forms of Sesn2. Our results demonstrated that the interaction paradigm for the mutants has been altered thus showing a significant decline in the hydrogen bonding network. Moreover, these mutations compromised the dynamic stability by altering the conformational flexibility, sampling time, and leucine-induced structural constraints that consequently caused variation in the binding and structural stability. Molecular dynamics-based flexibility analysis revealed that the regions 217-339 and 371-380 demonstrated a higher fluctuation. Noteworthy, these regions correspond to a linker (217-339) and a loop (371-380) that cover the leucine binding cavity that is critical for the 'latch' mechanism in the N-terminal, which is essential for leucine binding. Further validation of reduced binding and modified internal motions caused by the mutants was obtained through binding free energy calculations, principal components analysis (PCA), and free energy landscape (FEL) analysis. By unraveling the molecular intricacies of Sesn2-leucine interactions and their mutations, we hope to pave the way for innovative strategies to combat the inevitable tide of aging and its associated diseases.Communicated by Ramaswamy H. Sarma.

18.
PLoS One ; 19(7): e0305417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39042625

RESUMO

Hantaviruses are single-stranded RNA viruses belonging to the family Bunyaviridae that causes hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) worldwide. Currently, there is no effective vaccination or therapy available for the treatment of hantavirus, hence there is a dire need for research to formulate therapeutics for the disease. Computational vaccine designing is currently a highly accurate, time and cost-effective approach for designing effective vaccines against different diseases. In the current study, we shortlisted highly antigenic proteins i.e., envelope, and nucleoprotein from the proteome of hantavirus and subjected to the selection of highly antigenic epitopes to design of next-generation multi-epitope vaccine constructs. A highly antigenic and stable adjuvant was attached to the immune epitopes (T-cell, B-cell, and HTL) to design Env-Vac, NP-Vac, and Com-Vac constructs, which exhibit stronger antigenic, non-allergenic, and favorable physiochemical properties. Moreover, the 3D structures were predicted and docking analysis revealed robust interactions with the human Toll-like receptor 3 (TLR3) to initiate the immune cascade. The total free energy calculated for Env-Vac, NP-Vac, and Com-Vac was -50.02 kcal/mol, -24.13 kcal/mol, and -62.30 kcal/mol, respectively. In silico cloning, results demonstrated a CAI value for the Env-Vac, NP-Vac, and Com-Vac of 0.957, 0.954, and 0.956, respectively, while their corresponding GC contents were 65.1%, 64.0%, and 63.6%. In addition, the immune simulation results from three doses of shots released significant levels of IgG, IgM, interleukins, and cytokines, as well as antigen clearance over time, after receiving the vaccine and two booster doses. Our vaccines against Hantavirus were found to be highly immunogenic, inducing a robust immune response that demands experimental validation for clinical usage.


Assuntos
Orthohantavírus , Vacinas Virais , Orthohantavírus/imunologia , Vacinas Virais/imunologia , Humanos , Vacinologia/métodos , Simulação de Acoplamento Molecular , Simulação por Computador , Epitopos/imunologia , Epitopos/química , Modelos Moleculares , Infecções por Hantavirus/prevenção & controle , Infecções por Hantavirus/imunologia
19.
J Infect Public Health ; 17(7): 102448, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815532

RESUMO

BACKGROUND: Influenza A virus causes severe respiratory illnesses, especially in developing nations where most child deaths under 5 occur due to lower respiratory tract infections. The RIG-I protein acts as a sensor for viral dsRNA, triggering interferon production through K63-linked poly-ubiquitin chains synthesized by TRIM25. However, the influenza A virus's NS1 protein hinders this process by binding to TRIM25, disrupting its association with RIG-I and preventing downstream interferon signalling, contributing to the virus's evasion of the immune response. METHODS: In our study we used structural-based drug designing, molecular simulation, and binding free energy approaches to identify the potent phytocompounds from various natural product databases (>100,000 compounds) able to inhibit the binding of NS1 with the TRIM25. RESULTS: The molecular screening identified EA-8411902 and EA-19951545 from East African Natural Products Database, NA-390261 and NA-71 from North African Natural Products Database, SA-65230 and SA- 4477104 from South African Natural Compounds Database, NEA- 361 and NEA- 4524784 from North-East African Natural Products Database, TCM-4444713 and TCM-6056 from Traditional Chinese Medicines Database as top hits. The molecular docking and binding free energies results revealed that these compounds have high affinity with the specific active site residues (Leu95, Ser99, and Tyr89) involved in the interaction with TRIM25. Additionally, analysis of structural dynamics, binding free energy, and dissociation constants demonstrates a notably stronger binding affinity of these compounds with the NS1 protein. Moreover, all selected compounds exhibit exceptional ADMET properties, including high water solubility, gastrointestinal absorption, and an absence of hepatotoxicity, while adhering to Lipinski's rule. CONCLUSION: Our molecular simulation findings highlight that the identified compounds demonstrate high affinity for specific active site residues involved in the NS1-TRIM25 interaction, exhibit exceptional ADMET properties, and adhere to drug-likeness criteria, thus presenting promising candidates for further development as antiviral agents against influenza A virus infections.


Assuntos
Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteínas não Estruturais Virais , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/química , Antivirais/farmacologia , Antivirais/química , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos
20.
Front Pharmacol ; 15: 1352907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434705

RESUMO

In the current study, Neosetophomone B (NSP-B) was investigated for its anti-cancerous potential using network pharmacology, quantum polarized ligand docking, molecular simulation, and binding free energy calculation. Using SwissTarget prediction, and Superpred, the molecular targets for NSP-B were predicted while cancer-associated genes were obtained from DisGeNet. Among the total predicted proteins, only 25 were reported to overlap with the disease-associated genes. A protein-protein interaction network was constructed by using Cytoscape and STRING databases. MCODE was used to detect the densely connected subnetworks which revealed three sub-clusters. Cytohubba predicted four targets, i.e., fibroblast growth factor , FGF20, FGF22, and FGF23 as hub genes. Molecular docking of NSP-B based on a quantum-polarized docking approach with FGF6, FGF20, FGF22, and FGF23 revealed stronger interactions with the key hotspot residues. Moreover, molecular simulation revealed a stable dynamic behavior, good structural packing, and residues' flexibility of each complex. Hydrogen bonding in each complex was also observed to be above the minimum. In addition, the binding free energy was calculated using the MM/GBSA (Molecular Mechanics/Generalized Born Surface Area) and MM/PBSA (Molecular Mechanics/Poisson-Boltzmann Surface Area) approaches. The total binding free energy calculated using the MM/GBSA approach revealed values of -36.85 kcal/mol for the FGF6-NSP-B complex, -43.87 kcal/mol for the FGF20-NSP-B complex, and -37.42 kcal/mol for the FGF22-NSP-B complex, and -41.91 kcal/mol for the FGF23-NSP-B complex. The total binding free energy calculated using the MM/PBSA approach showed values of -30.05 kcal/mol for the FGF6-NSP-B complex, -39.62 kcal/mol for the FGF20-NSP-B complex, -34.89 kcal/mol for the FGF22-NSP-B complex, and -37.18 kcal/mol for the FGF23-NSP-B complex. These findings underscore the promising potential of NSP-B against FGF6, FGF20, FGF22, and FGF23, which are reported to be essential for cancer signaling. These results significantly bolster the potential of NSP-B as a promising candidate for cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA