Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Chem ; 11: 1132567, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936529

RESUMO

Atomically thin layered transition metal dichalcogenides (TMDs), such as MoS2 and WS2, have been getting much attention recently due to their interesting electronic and optoelectronic properties. Especially, spiral TMDs provide a variety of candidates for examining the light-matter interaction resulting from the broken inversion symmetry, as well as the potential new utilization in functional optoelectronic, electromagnetic and nanoelectronics devices. To realize their potential device applications, it is desirable to achieve controlled growth of these layered nanomaterials with a tunable stacking. Here, we demonstrate the Physical Vapor Deposition (PVD) growth of spiral pyramid-shaped WS2 with ∼200  µ m in size and the interesting optical properties via AFM and Raman spectroscopy. By controlling the precursors concentration and changing the initial nucleation rates in PVD growth, WS2 in different nanoarchitectures can be obtained. We discuss the growth mechanism for these spiral-patterned WS2 nanostructures based on the screw dislocations. This study provides a simple, scalable approach of screw dislocation-driven (SDD) growth of distinct TMD nanostructures with varying morphologies, and stacking.

2.
Nat Commun ; 14(1): 1819, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002238

RESUMO

The commonly-used superstrate configuration (depositing front subcell first and then depositing back subcell) in all-perovskite tandem solar cells is disadvantageous for long-term stability due to oxidizable narrow-bandgap perovskite assembled last and easily exposable to air. Here we reverse the processing order and demonstrate all-perovskite tandems in a substrate configuration (depositing back subcell first and then depositing front subcell) to bury oxidizable narrow-bandgap perovskite deep in the device stack. By using guanidinium tetrafluoroborate additive in wide-bandgap perovskite subcell, we achieve an efficiency of 25.3% for the substrate-configured all-perovskite tandem cells. The unencapsulated devices exhibit no performance degradation after storage in dry air for 1000 hours. The substrate configuration also widens the choice of flexible substrates: we achieve 24.1% and 20.3% efficient flexible all-perovskite tandem solar cells on copper-coated polyethylene naphthalene and copper metal foil, respectively. Substrate configuration offers a promising route to unleash the commercial potential of all-perovskite tandem solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA