Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543996

RESUMO

This paper presents the design, implementation, and validation of an on-blade sensor system for remote vibration measurement for low-capacity wind turbines. The autonomous sensor system was deployed on three wind turbines, with one of them operating in harsh weather conditions in the far south of Chile. The system recorded the acceleration response of the blades in the flapwise and edgewise directions, data that could be used for extracting the dynamic characteristics of the blades, information useful for damage diagnosis and prognosis. The proposed sensor system demonstrated reliable data acquisition and transmission from wind turbines in remote locations, proving the ability to create a fully autonomous system capable of recording data for monitoring and evaluating the state of health of wind turbine blades for extended periods without human intervention. The data collected by the sensor system presented in this study can serve as a foundation for developing vibration-based strategies for real-time structural health monitoring.

2.
Sci Total Environ ; 946: 174241, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38936711

RESUMO

Food availability has been endangered by recent global events, where agriculture, the main food source for the global population, is expected to increase even more to fulfill the growing food demand. Along with food production, water and energy consumption are also increased, leading to over-extraction of groundwater and an excess emission of greenhouse gases due to fossil fuel consumption. In this context, a balance of these three resources is crucial; therefore, the water-energy-food nexus is considered to address the previous issues by designing an energy-water management system based on robust predictive control. This controller estimates the future worst-case scenario for multiple climatic conditions, such as solar radiation, ambient temperature, wind speed, precipitation, and groundwater recharge, to define an optimal irrigation volume, maximize crop growth, and minimize water consumption. At the same time, the controller schedules daily irrigation and groundwater extraction, considering energy availability from solar generation and storage, to fulfill the previously defined irrigation volume while minimizing operating costs. Climate prediction is done through fuzzy prediction intervals, whose lower or upper bound are used as worst-case to include climate uncertainty on the controller design. The energy-water management system is tested in different experiments, where results show that considering a robust approach ensures maximum crop development, avoids over-extraction of groundwater, and prioritizes renewable energy sources. This work proposes a robust energy-water management system designed to be sustainable. Considering the water-energy-food nexus, the system ensures food security and proper resource allocation, tackling global starvation, water availability, and energy access.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA