Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Gut ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754953

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) has limited therapeutic options, particularly with immune checkpoint inhibitors. Highly chemoresistant 'stem-like' cells, known as cancer stem cells (CSCs), are implicated in PDAC aggressiveness. Thus, comprehending how this subset of cells evades the immune system is crucial for advancing novel therapies. DESIGN: We used the KPC mouse model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre) and primary tumour cell lines to investigate putative CSC populations. Transcriptomic analyses were conducted to pinpoint new genes involved in immune evasion. Overexpressing and knockout cell lines were established with lentiviral vectors. Subsequent in vitro coculture assays, in vivo mouse and zebrafish tumorigenesis studies, and in silico database approaches were performed. RESULTS: Using the KPC mouse model, we functionally confirmed a population of cells marked by EpCAM, Sca-1 and CD133 as authentic CSCs and investigated their transcriptional profile. Immune evasion signatures/genes, notably the gene peptidoglycan recognition protein 1 (PGLYRP1), were significantly overexpressed in these CSCs. Modulating PGLYRP1 impacted CSC immune evasion, affecting their resistance to macrophage-mediated and T-cell-mediated killing and their tumourigenesis in immunocompetent mice. Mechanistically, tumour necrosis factor alpha (TNFα)-regulated PGLYRP1 expression interferes with the immune tumour microenvironment (TME) landscape, promoting myeloid cell-derived immunosuppression and activated T-cell death. Importantly, these findings were not only replicated in human models, but clinically, secreted PGLYRP1 levels were significantly elevated in patients with PDAC. CONCLUSIONS: This study establishes PGLYRP1 as a novel CSC-associated marker crucial for immune evasion, particularly against macrophage phagocytosis and T-cell killing, presenting it as a promising target for PDAC immunotherapy.

2.
Gut ; 68(6): 1052-1064, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30121627

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a disease of unmet medical need. While immunotherapy with chimeric antigen receptor T (CAR-T) cells has shown much promise in haematological malignancies, their efficacy for solid tumours is challenged by the lack of tumour-specific antigens required to avoid on-target, off-tumour effects. Switchable CAR-T cells whereby activity of the CAR-T cell is controlled by dosage of a tumour antigen-specific recombinant Fab-based 'switch' to afford a fully tunable response may overcome this translational barrier. DESIGN: In this present study, we have used conventional and switchable CAR-T cells to target the antigen HER2, which is upregulated on tumour cells, but also present at low levels on normal human tissue. We used patient-derived xenograft models derived from patients with stage IV PDAC that mimic the most aggressive features of PDAC, including severe liver and lung metastases. RESULTS: Switchable CAR-T cells followed by administration of the switch directed against human epidermal growth factor receptor 2 (HER2)-induced complete remission in difficult-to-treat, patient-derived advanced pancreatic tumour models. Switchable HER2 CAR-T cells were as effective as conventional HER2 CAR-T cells in vivo testing a range of different CAR-T cell doses. CONCLUSION: These results suggest that a switchable CAR-T system is efficacious against aggressive and disseminated tumours derived from patients with advanced PDAC while affording the potential safety of a control switch.


Assuntos
Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Imunoterapia Adotiva/métodos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Animais , Antígenos de Neoplasias/genética , Biópsia por Agulha , Carcinoma Ductal Pancreático/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunoterapia/métodos , Invasividade Neoplásica/patologia , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias Pancreáticas/imunologia , Receptor ErbB-2/genética , Estatísticas não Paramétricas , Resultado do Tratamento , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
3.
Biochim Biophys Acta Gen Subj ; 1861(6): 1597-1605, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28161480

RESUMO

Nanomedicine nowadays offers novel solutions in cancer therapy by introducing multimodal treatments in one single formulation. In addition, nanoparticles act as nanocarriers changing the solubility, biodistribution and efficiency of the therapeutic molecules, thus generating more efficient treatments and reducing their side effects. To apply these novel therapeutic approaches, efforts are focused on the multi-functionalization of the nanoparticles and will open up new avenues to advanced combinational therapies. Pancreatic ductal adenocarcinoma (PDAC) is a cancer with unmet medical needs. Abundant expression of the anti-phagocytosis signal CD47 has also been observed on pancreatic cancer cells, in particular a subset of cancer stem cells (CSCs) responsible for resistance to standard therapy and metastatic potential. CD47 receptor is found on pancreatic cancer and highly expressed on CSCs, but not on normal pancreas. Inhibiting CD47 using monoclonal antibodies has been shown as an effective strategy to treat PDAC in vivo. However, CD47 inhibition effectively slowed tumor growth only in combination with Gemcitabine or Abraxane. In this work, we present the generation of multifunctionalized iron oxide magnetic nanoparticles (MNPs) that include the anti-CD47 antibody and the chemotherapeutic drug Gemcitabine in a single formulation. We demonstrate the in vitro efficacy of the formulation against CD47-positive pancreatic cancer cells. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antígeno CD47/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Portadores de Fármacos , Magnetismo/métodos , Nanopartículas de Magnetita , Nanomedicina/métodos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Antígeno CD47/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/química , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Composição de Medicamentos , Humanos , Nanopartículas de Magnetita/química , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Propriedades de Superfície , Células Tumorais Cultivadas , Gencitabina
4.
Proc Natl Acad Sci U S A ; 111(46): 16395-400, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25359213

RESUMO

Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. NS also is associated with a risk for developing myeloproliferative disorders (MPD), including juvenile myelomonocytic leukemia (JMML). Mutations responsible for NS occur in at least 11 different loci including KRAS. Here we describe a mouse model for NS induced by K-Ras(V14I), a recurrent KRAS mutation in NS patients. K-Ras(V14I)-mutant mice displayed multiple NS-associated developmental defects such as growth delay, craniofacial dysmorphia, cardiac defects, and hematologic abnormalities including a severe form of MPD that resembles human JMML. Homozygous animals had perinatal lethality whose penetrance varied with genetic background. Exposure of pregnant mothers to a MEK inhibitor rescued perinatal lethality and prevented craniofacial dysmorphia and cardiac defects. However, Mek inhibition was not sufficient to correct these defects when mice were treated after weaning. Interestingly, Mek inhibition did not correct the neoplastic MPD characteristic of these mutant mice, regardless of the timing at which the mice were treated, thus suggesting that MPD is driven by additional signaling pathways. These genetically engineered K-Ras(V14I)-mutant mice offer an experimental tool for studying the molecular mechanisms underlying the clinical manifestations of NS. Perhaps more importantly, they should be useful as a preclinical model to test new therapies aimed at preventing or ameliorating those deficits associated with this syndrome.


Assuntos
Modelos Animais de Doenças , Genes ras , Camundongos Mutantes , Mutação de Sentido Incorreto , Síndrome de Noonan/genética , Mutação Puntual , Proteínas Proto-Oncogênicas p21(ras)/genética , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/prevenção & controle , Alelos , Substituição de Aminoácidos , Animais , Tamanho Corporal/genética , Linhagem da Célula , Cruzamentos Genéticos , Nanismo/genética , Epistasia Genética , Face/anormalidades , Feminino , Genes Dominantes , Genótipo , Cardiopatias Congênitas/genética , Hematopoese/genética , Leucemia Mielomonocítica Juvenil/genética , MAP Quinase Quinase Quinases/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes/genética , Transtornos Mieloproliferativos/genética , Síndromes Neoplásicas Hereditárias/embriologia , Síndromes Neoplásicas Hereditárias/genética , Fenótipo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Quimera por Radiação , Transdução de Sinais/efeitos dos fármacos
5.
Stem Cells ; 33(10): 2893-902, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26202953

RESUMO

Pancreatic cancer stem cells (CSCs) have been first described in 2007 and since then have emerged as an intriguing entity of cancer cells with distinct functional features including self-renewal and exclusive in vivo tumorigenicity. The heterogeneous pancreatic CSC pool has been implicated in tumor propagation as well as metastatic spread. Clinically, the most important feature of CSCs is their strong resistance to standard chemotherapy, which results in fast disease relapse, even with today's more advanced chemotherapeutic regimens. Therefore, novel therapeutic strategies to most efficiently target pancreatic CSCs are being developed and their careful clinical translation should provide new avenues to eradicate this deadly disease.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Neoplásicas , Neoplasias Pancreáticas/genética , Animais , Proliferação de Células , Humanos , Metástase Neoplásica , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Gut ; 64(12): 1936-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25887381

RESUMO

OBJECTIVE: Cancer stem cells (CSCs) represent the root of many solid cancers including pancreatic ductal adenocarcinoma, are highly chemoresistant and represent the cellular source for disease relapse. However the mechanisms involved in these processes still need to be fully elucidated. Understanding the mechanisms implicated in chemoresistance and metastasis of pancreatic cancer is critical to improving patient outcomes. DESIGN: Micro-RNA (miRNA) expression analyses were performed to identify functionally defining epigenetic signatures in pancreatic CSC-enriched sphere-derived cells and gemcitabine-resistant pancreatic CSCs. RESULTS: We found the miR-17-92 cluster to be downregulated in chemoresistant CSCs versus non-CSCs and demonstrate its crucial relevance for CSC biology. In particular, overexpression of miR-17-92 reduced CSC self-renewal capacity, in vivo tumourigenicity and chemoresistance by targeting multiple NODAL/ACTIVIN/TGF-ß1 signalling cascade members as well as directly inhibiting the downstream targets p21, p57 and TBX3. Overexpression of miR-17-92 translated into increased CSC proliferation and their eventual exhaustion via downregulation of p21 and p57. Finally, the translational impact of our findings could be confirmed in preclinical models for pancreatic cancer. CONCLUSIONS: Our findings therefore identify the miR-17-92 cluster as a functionally determining family of miRNAs in CSCs, and highlight the putative potential of developing modulators of this cluster to overcome drug resistance in pancreatic CSCs.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Ativinas/metabolismo , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Autorrenovação Celular , Transformação Celular Neoplásica , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Regulação para Baixo , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteína Nodal/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , RNA Longo não Codificante , Transdução de Sinais , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta1/metabolismo , Gencitabina
7.
Gastroenterology ; 147(5): 1119-33.e4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25127677

RESUMO

BACKGROUND & AIMS: Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. METHODS: We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. RESULTS: Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting differentiation toward an acinar cell program. CONCLUSIONS: In mice, nicotine promotes pancreatic carcinogenesis and tumor development via down-regulation of Gata6 to induce acinar cell dedifferentiation.


Assuntos
Células Acinares/efeitos dos fármacos , Carcinoma Ductal Pancreático/induzido quimicamente , Desdiferenciação Celular/efeitos dos fármacos , Fator de Transcrição GATA6/metabolismo , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Pâncreas/efeitos dos fármacos , Neoplasias Pancreáticas/induzido quimicamente , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/prevenção & controle , Carcinoma Ductal Pancreático/secundário , Linhagem Celular Tumoral , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Transcrição GATA6/deficiência , Fator de Transcrição GATA6/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Metformina/farmacologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Mutação , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/deficiência , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética
8.
Arterioscler Thromb Vasc Biol ; 32(2): e13-21, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22199368

RESUMO

OBJECTIVE: Cord blood-derived human endothelial colony-forming cells (ECFCs) bear a high proliferative capacity and potently enhance tissue neovascularization in vivo. Here, we investigated whether the leading mechanism for the functional improvement relates to their physical vascular incorporation or perivascular paracrine effects and whether the effects can be further enhanced by dual-cell-based therapy, including mesenchymal stem cells (MSCs). METHODS AND RESULTS: ECFCs or MSCs were lentivirally transduced with thymidine kinase suicide gene driven by the endothelial-specific vascular endothelial growth factor 2 (kinase insert domain receptor) promoter and evaluated in a hindlimb ischemia model. ECFCs and MSCs enhanced neovascularization after ischemic events to a similar extent. Dual therapy using ECFCs and MSCs further enhanced neovascularization. Mechanistically, 3 weeks after induction of ischemia followed by cell therapy, ganciclovir-mediated elimination of kinase insert domain receptor(+) cells completely reversed the therapeutic effect of ECFCs but not that of MSCs. Histological analysis revealed that ganciclovir effectively eliminated ECFCs incorporated into the vasculature. CONCLUSIONS: Endothelial-specific suicide gene technology demonstrates distinct mechanisms for ECFCs and MSCs, with complete abolishment of ECFC-mediated effects, whereas MSC-mediated effects remained unaffected. These data strengthen the notion that a dual-cell-based therapy represents a promising approach for vascular regeneration of ischemic tissue.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Endotélio Vascular/citologia , Membro Posterior/irrigação sanguínea , Isquemia/terapia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/fisiologia , Células-Tronco/citologia , Animais , Proliferação de Células , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Feminino , Ganciclovir/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Nus , Modelos Animais , Fenótipo , Recuperação de Função Fisiológica/fisiologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia
9.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188868, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842769

RESUMO

Pancreatic cancer is a lethal condition with a rising incidence and often presents at an advanced stage, contributing to abysmal five-year survival rates. Unspecific symptoms and the current lack of biomarkers and screening tools hamper early diagnosis. New technologies for liquid biopsies and their respective evaluation in pancreatic cancer patients have emerged over recent years. The term liquid biopsy summarizes the sampling and analysis of circulating tumor cells (CTCs), small extracellular vesicles (sEVs), and tumor DNA (ctDNA) from body fluids. The major advantages of liquid biopsies rely on their minimal invasiveness and repeatability, allowing serial sampling for dynamic insights to aid diagnosis, particularly early detection, risk stratification, and precision medicine in pancreatic cancer. However, liquid biopsies have not yet developed into a new pillar for clinicians' routine armamentarium. Here, we summarize recent findings on the use of liquid biopsy in pancreatic cancer patients. We discuss current challenges and future perspectives of this potentially powerful alternative to conventional tissue biopsies.


Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Biópsia Líquida , DNA de Neoplasias , Biópsia , Neoplasias Pancreáticas
10.
Eur J Cancer ; 190: 112940, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37413845

RESUMO

Pancreatic cancer is one of the most lethal cancers, mostly due to late diagnosis and limited treatment options. Early detection of pancreatic cancer in high-risk populations bears the potential to greatly improve outcomes, but current screening approaches remain of limited value despite recent technological advances. This review explores the possible advantages of liquid biopsies for this application, particularly focusing on circulating tumour cells (CTCs) and their subsequent single-cell omics analysis. Originating from both primary and metastatic tumour sites, CTCs provide important information for diagnosis, prognosis and tailoring of treatment strategies. Notably, CTCs have even been detected in the blood of subjects with pancreatic precursor lesions, suggesting their suitability as a non-invasive tool for the early detection of malignant transformation in the pancreas. As intact cells, CTCs offer comprehensive genomic, transcriptomic, epigenetic and proteomic information that can be explored using rapidly developing techniques for analysing individual cells at the molecular level. Studying CTCs during serial sampling and at single-cell resolution will help to dissect tumour heterogeneity for individual patients and among different patients, providing new insights into cancer evolution during disease progression and in response to treatment. Using CTCs for non-invasive tracking of cancer features, including stemness, metastatic potential and expression of immune targets, provides important and readily accessible molecular insights. Finally, the emerging technology of ex vivo culturing of CTCs could create new opportunities to study the functionality of individual cancers at any stage and develop personalised and more effective treatment approaches for this lethal disease.


Assuntos
Células Neoplásicas Circulantes , Neoplasias Pancreáticas , Humanos , Proteômica , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células Neoplásicas Circulantes/patologia , Prognóstico , Biomarcadores Tumorais/metabolismo , Neoplasias Pancreáticas
11.
Cancer Res Commun ; 3(4): 640-658, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37082579

RESUMO

Specific targets for cancer treatment are highly desirable, but still remain to be discovered. While previous reports suggested that CAPRIN-1 localizes in the cytoplasm, here we now show that part of this molecule is strongly expressed on the cell membrane surface in most solid cancers, but not normal tissues. Notably, the membrane expression of CAPRIN-1 extended to the subset of highly tumorigenic cancer stem cells and epithelial-mesenchymal transition (EMT)-induced metastatic cancer cells. In addition, we revealed that cancer cells with particularly high CAPRIN-1 surface expression exhibited enhanced tumorigenicity. We generated a therapeutic humanized anti-CAPRIN-1 antibody (TRK-950), which strongly and specifically binds to various cancer cells and shows antitumor effects via engagement of immune cells. TRK-950 was further developed as a new cancer drug and a series of preclinical studies demonstrates its therapeutic potency in tumor-bearing mouse models and safety in a relevant cynomolgus monkey model. Together, our data demonstrate that CAPRIN-1 is a novel and universal target for cancer therapies. A phase I clinical study of TRK-950 has been completed (NCT02990481) and a phase Ib study (combination with approved drugs) is currently underway (NCT03872947) in the United States and France. In parallel, a phase I study in Japan is in progress as well (NCT05423262). Significance: Antibody-based cancer therapies have been demonstrated to be effective, but are only approved for a limited number of targets, because the majority of these markers is shared with healthy tissue, which may result in adverse effects. Here, we have successfully identified CAPRIN-1 as a novel truly cancer-specific target, universally expressed on membranes of various cancer cells including cancer stem cells. Clinical studies are underway for the anti-CAPRIN-1 therapeutic antibody TRK-950.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular , Macaca fascicularis/metabolismo , Neoplasias/tratamento farmacológico
12.
J Exp Clin Cancer Res ; 42(1): 106, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118819

RESUMO

BACKGROUND: The malaria protein VAR2CSA binds oncofetal chondroitin sulfate (ofCS), a unique chondroitin sulfate, expressed on almost all mammalian cancer cells. Previously, we produced a bispecific construct targeting ofCS and human T cells based on VAR2CSA and anti-CD3 (V-aCD3Hu). V-aCD3Hu showed efficacy against xenografted tumors in immunocompromised mice injected with human immune cells at the tumor site. However, the complex effects potentially exerted by the immune system as a result of the treatment cannot occur in mice without an immune system. Here we investigate the efficacy of V-aCD3Mu as a monotherapy and combined with immune checkpoint inhibitors in mice with a fully functional immune system. METHODS: We produced a bispecific construct consisting of a recombinant version of VAR2CSA coupled to an anti-murine CD3 single-chain variable fragment. Flow cytometry and ELISA were used to check cell binding capabilities and the therapeutic effect was evaluated in vitro in a killing assay. The in vivo efficacy of V-aCD3Mu was then investigated in mice with a functional immune system and established or primary syngeneic tumors in the immunologically "cold" 4T1 mammary carcinoma, B16-F10 malignant melanoma, the pancreatic KPC mouse model, and in the immunologically "hot" CT26 colon carcinoma model. RESULTS: V-aCD3Mu had efficacy as a monotherapy, and the combined treatment of V-aCD3Mu and an immune checkpoint inhibitor showed enhanced effects resulting in the complete elimination of solid tumors in the 4T1, B16-F10, and CT26 models. This anti-tumor effect was abscopal and accompanied by a systemic increase in memory and activated cytotoxic and helper T cells. The combined treatment also led to a higher percentage of memory T cells in the tumor without an increase in regulatory T cells. In addition, we observed partial protection against re-challenge in a melanoma model and full protection in a breast cancer model. CONCLUSIONS: Our findings suggest that V-aCD3Mu combined with an immune checkpoint inhibitor renders immunologically "cold" tumors "hot" and results in tumor elimination. Taken together, these data provide proof of concept for the further clinical development of V-aCD3 as a broad cancer therapy in combination with an immune checkpoint inhibitor.


Assuntos
Anticorpos Biespecíficos , Carcinoma , Melanoma Experimental , Humanos , Camundongos , Animais , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/metabolismo , Memória Imunológica , Inibidores de Checkpoint Imunológico , Melanoma Experimental/tratamento farmacológico , Carcinoma/tratamento farmacológico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Linhagem Celular Tumoral , Mamíferos/metabolismo
13.
J Exp Clin Cancer Res ; 42(1): 323, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38012687

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a profoundly aggressive and fatal cancer. One of the key factors defining its aggressiveness and resilience against chemotherapy is the existence of cancer stem cells (CSCs). The important task of discovering upstream regulators of stemness that are amenable for targeting in PDAC is essential for the advancement of more potent therapeutic approaches. In this study, we sought to elucidate the function of the nuclear receptor subfamily 5, group A, member 2 (NR5A2) in the context of pancreatic CSCs. METHODS: We modeled human PDAC using primary PDAC cells and CSC-enriched sphere cultures. NR5A2 was genetically silenced or inhibited with Cpd3. Assays included RNA-seq, sphere/colony formation, cell viability/toxicity, real-time PCR, western blot, immunofluorescence, ChIP, CUT&Tag, XF Analysis, lactate production, and in vivo tumorigenicity assays. PDAC models from 18 patients were treated with Cpd3-loaded nanocarriers. RESULTS: Our findings demonstrate that NR5A2 plays a dual role in PDAC. In differentiated cancer cells, NR5A2 promotes cell proliferation by inhibiting CDKN1A. On the other hand, in the CSC population, NR5A2 enhances stemness by upregulating SOX2 through direct binding to its promotor/enhancer region. Additionally, NR5A2 suppresses MYC, leading to the activation of the mitochondrial biogenesis factor PPARGC1A and a shift in metabolism towards oxidative phosphorylation, which is a crucial feature of stemness in PDAC. Importantly, our study shows that the specific NR5A2 inhibitor, Cpd3, sensitizes a significant fraction of PDAC models derived from 18 patients to standard chemotherapy. This treatment approach results in durable remissions and long-term survival. Furthermore, we demonstrate that the expression levels of NR5A2/SOX2 can predict the response to treatment. CONCLUSIONS: The findings of our study highlight the cell context-dependent effects of NR5A2 in PDAC. We have identified a novel pharmacological strategy to modulate SOX2 and MYC levels, which disrupts stemness and prevents relapse in this deadly disease. These insights provide valuable information for the development of targeted therapies for PDAC, offering new hope for improved patient outcomes. A Schematic illustration of the role of NR5A2 in cancer stem cells versus differentiated cancer cells, along with the action of the NR5A2 inhibitor Cpd3. B Overall survival of tumor-bearing mice following allocated treatment. A total of 18 PDX models were treated using a 2 x 1 x 1 approach (two animals per model per treatment); n=36 per group (illustration created with biorender.com ).


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Transdução de Sinais , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Neoplasias Pancreáticas
14.
Nat Med ; 11(2): 206-13, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15665831

RESUMO

Infusion of endothelial progenitor cells (EPC), but not of mature endothelial cells, promotes neovascularization after ischemia. We performed gene expression profiling of EPC and endothelial cells to identify genes that might be important for the neovascularization capacity of EPC. Notably, the protease cathepsin L (CathL) was highly expressed in EPC as opposed to endothelial cells and was essential for matrix degradation and invasion by EPC in vitro. CathL-deficient mice showed impaired functional recovery following hind limb ischemia, supporting the concept of a crucial role for CathL in postnatal neovascularization. Infused CathL-deficient progenitor cells neither homed to sites of ischemia nor augmented neovascularization. Forced expression of CathL in mature endothelial cells considerably enhanced their invasive activity and sufficed to confer their capacity for neovascularization in vivo. We concluded that CathL has a critical role in the integration of circulating EPC into ischemic tissue and is required for EPC-mediated neovascularization.


Assuntos
Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Células Endoteliais/fisiologia , Neovascularização Fisiológica , Células-Tronco/fisiologia , Animais , Biomarcadores , Catepsina L , Catepsinas/genética , Cisteína Endopeptidases/genética , Células Endoteliais/citologia , Perfilação da Expressão Gênica , Membro Posterior/irrigação sanguínea , Membro Posterior/fisiologia , Humanos , Isquemia/metabolismo , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco/citologia
15.
Pharmaceutics ; 14(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890361

RESUMO

Merkel cell carcinoma (MCC) is a neuroendocrine skin cancer of the elderly, with high metastatic potential and poor prognosis. In particular, the primary resistance to immune checkpoint inhibitors (ICI) in metastatic (m)MCC patients represents a challenge not yet met by any efficient treatment modality. Herein, we describe a novel therapeutic concept with short-interval, low-dose 177Lutetium (Lu)-high affinity (HA)-DOTATATE [177Lu]Lu-HA-DOTATATE peptide receptor radionuclide therapy (SILD-PRRT) in combination with PD-1 ICI to induce remission in patients with ICI-resistant mMCC. We report on the initial refractory response of two immunocompromised mMCC patients to the PD-L1 inhibitor avelumab. After confirming the expression of somatostatin receptors (SSTR) on tumor cells by [68Ga]Ga-HA-DOTATATE-PET/CT (PET/CT), we employed low-dose PRRT (up to six treatments, mean activity 3.5 GBq per cycle) at 3-6 weeks intervals in combination with the PD-1 inhibitor pembrolizumab to restore responsiveness to ICI. This combination enabled the synergistic application of PD-1 checkpoint immunotherapy with low-dose PRRT at more frequent intervals, and was very well tolerated by both patients. PET/CTs demonstrated remarkable responses at all metastatic sites (lymph nodes, distant skin, and bones), which were maintained for 3.6 and 4.8 months, respectively. Both patients eventually succumbed with progressive disease after 7.7 and 8 months, respectively, from the start of treatment with SILD-PRRT and pembrolizumab. We demonstrate that SILD-PRRT in combination with pembrolizumab is safe and well-tolerated, even in elderly, immunocompromised mMCC patients. The restoration of clinical responses in ICI-refractory patients as proposed here could potentially be used not only for patients with mMCC, but many other cancer types currently treated with PD-1/PD-L1 inhibitors.

16.
J Exp Med ; 201(11): 1825-35, 2005 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-15928198

RESUMO

The regulation of acetylation is central for the epigenetic control of lineage-specific gene expression and determines cell fate decisions. We provide evidence that the inhibition of histone deacetylases (HDACs) blocks the endothelial differentiation of adult progenitor cells. To define the mechanisms by which HDAC inhibition prevents endothelial differentiation, we determined the expression of homeobox transcription factors and demonstrated that HoxA9 expression is down-regulated by HDAC inhibitors. The causal involvement of HoxA9 in the endothelial differentiation of adult progenitor cells is supported by the finding that HoxA9 overexpression partially rescued the endothelial differentiation blockade induced by HDAC inhibitors. Knockdown and overexpression studies revealed that HoxA9 acts as a master switch to regulate the expression of prototypical endothelial-committed genes such as endothelial nitric oxide synthase, VEGF-R2, and VE-cadherin, and mediates the shear stress-induced maturation of endothelial cells. Consistently, HoxA9-deficient mice exhibited lower numbers of endothelial progenitor cells and showed an impaired postnatal neovascularization capacity after the induction of ischemia. Thus, HoxA9 is regulated by HDACs and is critical for postnatal neovascularization.


Assuntos
Diferenciação Celular/fisiologia , Células Endoteliais/fisiologia , Regulação da Expressão Gênica/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Histona Desacetilases/metabolismo , Proteínas de Homeodomínio/biossíntese , Animais , Antígenos CD , Caderinas/metabolismo , Células Cultivadas , Células Endoteliais/citologia , Sangue Fetal/citologia , Sangue Fetal/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/genética , Humanos , Isquemia/metabolismo , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Estresse Mecânico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
J Exp Med ; 201(1): 63-72, 2005 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-15623573

RESUMO

The mechanisms of homing of endothelial progenitor cells (EPCs) to sites of ischemia are unclear. Here, we demonstrate that ex vivo-expanded EPCs as well as murine hematopoietic Sca-1+/Lin- progenitor cells express beta2-integrins, which mediate the adhesion of EPCs to endothelial cell monolayers and their chemokine-induced transendothelial migration in vitro. In a murine model of hind limb ischemia, Sca-1+/Lin- hematopoietic progenitor cells from beta2-integrin-deficient mice are less capable of homing to sites of ischemia and of improving neovascularization. Preactivation of the beta2-integrins expressed on EPCs by activating antibodies augments the EPC-induced neovascularization in vivo. These results provide evidence for a novel function of beta2-integrins in postnatal vasculogenesis.


Assuntos
Antígenos CD18/metabolismo , Movimento Celular/fisiologia , Células Endoteliais/fisiologia , Isquemia/fisiopatologia , Neovascularização Fisiológica/fisiologia , Células-Tronco/fisiologia , Animais , Antígenos CD18/fisiologia , Adesão Celular/fisiologia , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Citometria de Fluxo , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Humanos , Leucócitos Mononucleares , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco/metabolismo
18.
Circ Res ; 105(6): 537-44, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19679834

RESUMO

RATIONALE: Endothelial progenitor cells (EPCs, defined as sca-1(+)flk-1(+)lin(-) mononuclear blood cells) contribute to vascular repair. The role of hypoxia and reactive oxygen species (ROS) in mobilization and function of these cells is incompletely understood. OBJECTIVE: We studied the contribution of the NADPH oxidase Nox2, an important vascular source of ROS in this context. METHODS AND RESULTS: Hypoxia (10% oxygen) induced the mobilization of EPCs in wild-type (WT) and Nox1 but not in Nox2 knockout (Nox2(y/-)) mice. As erythropoietin (EPO) is known to induce EPC mobilization, we focused on this hormone. EPO induced the mobilization of EPCs in WT and Nox1(y/-) but not Nox2(y/-) animals. Transplantation of bone marrow from Nox2(y/-) mice into WT-mice blocked mobilization in response to hypoxia and EPO, whereas transplantation of WT bone marrow into Nox2(y/-) mice restored mobilization. Reendothelialization of the injured mouse carotid artery was enhanced by hypoxia as well as by EPO, and this effect was not observed in Nox2(y/-) mice or after transplantation of Nox2(y/-) bone marrow. In cultured EPCs from WT but not Nox2(y/-) mice, EPO induced ROS production, migration, and proliferation. EPO signaling involves the STAT5 transcription factor. EPO-induced STAT5-dependent reporter gene expression was absent in Nox2-deficient cells. siRNA against the redox-sensitive phosphatase SHP-2 restored EPO-mediated STAT5 induction and inhibition of SHP-2 restored EPO-induced migration in Nox2-deficient cells CONCLUSIONS: We conclude that Nox2-derived ROS inactivate SHP-2 and thereby facilitate EPO signaling in EPCs to promote hypoxia-induced mobilization and vascular repair by these cells.


Assuntos
Células Endoteliais/enzimologia , Hipóxia/enzimologia , Leucócitos Mononucleares/enzimologia , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Células-Tronco/enzimologia , Animais , Antígenos Ly , Transplante de Medula Óssea , Artérias Carótidas/enzimologia , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/enzimologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Células Cultivadas , Células Endoteliais/patologia , Eritropoetina/metabolismo , Regulação da Expressão Gênica/genética , Hipóxia/genética , Hipóxia/patologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana , Camundongos , Camundongos Knockout , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidases/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/genética , Células-Tronco/patologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Cicatrização/genética
19.
Arterioscler Thromb Vasc Biol ; 30(10): 1897-904, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20689075

RESUMO

OBJECTIVE: Vasculogenic progenitor cell therapy for ischemic diseases bears great potential but still requires further optimization for justifying its clinical application. Here, we investigated the effects of in vivo tissue engineering by combining vasculogenic progenitors with injectable scaffolds releasing controlled amounts of proangiogenic growth factors. METHODS AND RESULTS: We produced biodegradable, injectable polylactic coglycolic acid-based scaffolds releasing single factors or combinations of vascular endothelial growth factor, hepatocyte growth factor, and angiopoietin-1. Dual and triple combinations of scaffold-released growth factors were superior to single release. In murine hindlimb ischemia models, scaffolds releasing dual (vascular endothelial growth factor and hepatocyte growth factor) or triple combinations improved effects of cord blood-derived vasculogenic progenitors. Increased migration, homing, and incorporation of vasculogenic progenitors into the vasculature augmented capillary density, translating into improved blood perfusion. Most importantly, scaffold-released triple combinations including the vessel stabilizer angiopoietin-1 enhanced the number of perivascular smooth muscle actin(+) vascular smooth muscle cells, indicating more efficient vessel stabilization. CONCLUSIONS: Vasculogenic progenitor cell therapy is significantly enhanced by in vivo tissue engineering providing a proangiogenic and provasculogenic growth factor-enriched microenvironment. Therefore, combined use of scaffold-released growth factors and cell therapy improves neovascularization in ischemic diseases and may translate into more pronounced clinical effects.


Assuntos
Substâncias de Crescimento/administração & dosagem , Isquemia/terapia , Angiopoietina-1/administração & dosagem , Animais , Embrião de Galinha , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Fator de Crescimento de Hepatócito/administração & dosagem , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/tratamento farmacológico , Isquemia/patologia , Ácido Láctico , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Transplante de Células-Tronco , Engenharia Tecidual , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/administração & dosagem
20.
Nat Med ; 9(11): 1370-6, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14556003

RESUMO

Endothelial nitric oxide synthase (eNOS) is essential for neovascularization. Here we show that the impaired neovascularization in mice lacking eNOS is related to a defect in progenitor cell mobilization. Mice deficient in eNOS (Nos3(-/-)) show reduced vascular endothelial growth factor (VEGF)-induced mobilization of endothelial progenitor cells (EPCs) and increased mortality after myelosuppression. Intravenous infusion of wild-type progenitor cells, but not bone marrow transplantation, rescued the defective neovascularization of Nos3(-/-) mice in a model of hind-limb ischemia, suggesting that progenitor mobilization from the bone marrow is impaired in Nos3(-/-) mice. Mechanistically, matrix metalloproteinase-9 (MMP-9), which is required for stem cell mobilization, was reduced in the bone marrow of Nos3(-/-) mice. These findings indicate that eNOS expressed by bone marrow stromal cells influences recruitment of stem and progenitor cells. This may contribute to impaired regeneration processes in ischemic heart disease patients, who are characterized by a reduced systemic NO bioactivity.


Assuntos
Neovascularização Fisiológica/fisiologia , Óxido Nítrico Sintase/fisiologia , Células-Tronco/fisiologia , Animais , Precursores Enzimáticos/metabolismo , Gelatinases/metabolismo , Isquemia/terapia , Metaloendopeptidases/metabolismo , Camundongos , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA