Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063118

RESUMO

Iron oxide nanoparticles were synthesized by co-precipitation using three different iron salt stoichiometric mole ratios. Powder X-ray diffraction patterns revealed the inverse cubic spinel structure of magnetite iron oxide. Transmission electron microscopic images showed Fe3O4 nanoparticles with different shapes and average particle sizes of 5.48 nm for Fe3O4-1:2, 6.02 nm for Fe3O4-1.5:2, and 6.98 nm for Fe3O4-2:3 with an energy bandgap of 3.27 to 3.53 eV. The as-prepared Fe3O4 nanoparticles were used as photocatalysts to degrade brilliant green (BG), rhodamine B (RhB), indigo carmine (IC), and methyl red (MR) under visible light irradiation. The photocatalytic degradation efficiency of 80.4% was obtained from Fe3O4-1:2 for brilliant green, 61.5% from Fe3O4-1.5:2 for rhodamine B, and 77.9% and 73.9% from Fe3O4-2:3 for both indigo carmine and methyl red. This indicates that Fe3O4-2:3 is more efficient in the degradation of more than one dye. This study shows that brilliant green degrades most effectively at pH 9, rhodamine B degrades best at pH 6.5, and indigo carmine and methyl red degrade most efficiently at pH 3. Recyclability experiments showed that the Fe3O4 photocatalysts can be recycled four times and are photostable.


Assuntos
Corantes , Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Corantes/química , Catálise , Luz , Difração de Raios X , Rodaminas/química , Fotólise , Índigo Carmim/química , Precipitação Química , Processos Fotoquímicos
2.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887328

RESUMO

Hazardous chemical compounds such as endocrine-disrupting chemicals (EDCs) are widespread and part of the materials we use daily. Among these compounds, bisphenol A (BPA) is the most common endocrine-disrupting chemical and is prevalent due to the chemical raw materials used to manufacture thermoplastic polymers, rigid foams, and industrial coatings. General exposure to endocrine-disrupting chemicals constitutes a serious health hazard, especially to reproductive systems, and can lead to transgenerational diseases in adults due to exposure to these chemicals over several years. Thus, it is necessary to develop sensors for early detection of endocrine-disrupting chemicals. In recent years, the use of metal-organic frameworks (MOFs) as sensors for EDCs has been explored due to their distinctive characteristics, such as wide surface area, outstanding chemical fastness, structural tuneability, gas storage, molecular separation, proton conductivity, and catalyst activity, among others which can be modified to sense hazardous environmental pollutants such as EDCs. In order to improve the versatility of MOFs as sensors, semiconductor quantum dots have been introduced into the MOF pores to form metal-organic frameworks/quantum dots composites. These composites possess a large optical absorption coefficient, low toxicity, direct bandgap, formidable sensing capacity, high resistance to change under light and tunable visual qualities by varying the size and compositions, which make them useful for applications as sensors for probing of dangerous and risky environmental contaminants such as EDCs and more. In this review, we explore various synthetic strategies of (MOFs), quantum dots (QDs), and metal-organic framework quantum dots composites (MOFs@QDs) as efficient compounds for the sensing of ecological pollutants, contaminants, and toxicants such as EDCs. We also summarize various compounds or materials used in the detection of BPA as well as the sensing ability and capability of MOFs, QDs, and MOFs@QDs composites that can be used as sensors for EDCs and BPA.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Estruturas Metalorgânicas , Pontos Quânticos , Adulto , Disruptores Endócrinos/análise , Humanos , Estruturas Metalorgânicas/química , Plásticos
3.
Int J Mol Sci ; 22(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34830175

RESUMO

The development of nanomaterials with therapeutic and/or diagnostic properties has been an active area of research in biomedical sciences over the past decade. Nanomaterials have been identified as significant medical tools with potential therapeutic and diagnostic capabilities that are practically impossible to accomplish using larger molecules or bulk materials. Fabrication of nanomaterials is the most effective platform to engineer therapeutic agents and delivery systems for the treatment of cancer. This is mostly due to the high selectivity of nanomaterials for cancerous cells, which is attributable to the porous morphology of tumour cells which allows nanomaterials to accumulate more in tumour cells more than in normal cells. Nanomaterials can be used as potential drug delivery systems since they exist in similar scale as proteins. The unique properties of nanomaterials have drawn a lot of interest from researchers in search of new chemotherapeutic treatment for cancer. Metal sulfide nanomaterials have emerged as the most used frameworks in the past decade, but they tend to aggregate because of their high surface energy which triggers the thermodynamically favoured interaction. Stabilizing agents such as polymer and microgels have been utilized to inhibit the particles from any aggregations. In this review, we explore the development of metal sulfide polymer/microgel nanocomposites as therapeutic agents against cancerous cells.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Microgéis/química , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Polímeros/química , Semicondutores , Sulfetos/química , Antineoplásicos/química , Pesquisa Biomédica/instrumentação , Pesquisa Biomédica/métodos , Humanos , Metais/química
4.
Molecules ; 26(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885833

RESUMO

Bis(4-methylpiperidine-1-carbodithioato)-lead(II) and bis(4-benzylpiperidine-1-carbodithioato)-lead(II) were prepared and their molecular structures elucidated using single crystal X-ray crystallography and spectroscopic techniques. The compounds were used as precursors for the preparation of lead sulphide nano photocatalysts for the degradation of rhodamine B. The single crystal structures of the lead(II) dithiocarbamate complexes show mononuclear lead(II) compounds in which each lead(II) ion coordinates two dithiocarbamato anions in a distorted tetrahedral geometry. The compounds were thermolyzed at 180 ℃ in hexadecylamine (HDA), octadecylamine (ODA), and trioctylphosphine oxide (TOPO) to prepare HDA, ODA, and TOPO capped lead sulphide (PbS) nanoparticles. Powder X-ray diffraction (pXRD) patterns of the lead sulphide nanoparticles were indexed to the rock cubic salt crystalline phase of lead sulphide. The lead sulphide nanoparticles were used as photocatalysts for the degradation of rhodamine B with ODA-PbS1 achieving photodegradation efficiency of 45.28% after 360 min. The photostability and reusability studies of the as-prepared PbS nanoparticles were studied in four consecutive cycles, showing that the percentage degradation efficiency decreased slightly by about 0.51-1.93%. The results show that the as-prepared PbS nanoparticles are relatively photostable with a slight loss of photodegradation activities as the reusability cycles progress.

5.
Molecules ; 26(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34946768

RESUMO

We present the preparation of octadecylamine-capped ZnS quantum dots from bis(morpholinyldithiocarbamato)Zn(II) complex. The complex was thermolyzed at 130 °C in octadecylamine at different times, to study the effect of reaction time on the morphological and photocatalytic properties of the ZnS quantum dots. Powder X-ray diffraction patterns confirmed a hexagonal wurtzite crystalline phase of ZnS, while HRTEM images showed particle sizes of about 1-3 nm, and energy band gaps of 3.68 eV (ZnS-1), 3.87 eV (ZnS-2), and 4.16 eV (ZnS-3) were obtained from the Tauc plot for the ZnS nanoparticles. The as-prepared ZnS were used as photocatalysts for the degradation of brilliant green, rhodamine B, and binary dye consisting of a mixture of brilliant green-rhodamine B. The highest photocatalytic degradation efficiency of 94% was obtained from ZnS-3 with low photoluminescence intensity. The effect of catalytic dosage and pH of the dyes solution on the photocatalytic process shows that pH 8 is optimal for the degradation of brilliant green, while pH 6.5 is the best for photocatalytic degradation of rhodamine B. The degradation of the binary dyes followed the same trends. The effect of catalytic dosage shows that 1 mg mL-1 of the ZnS nano-photocatalyst is the optimum dosage for the degradation of organic dyes. Reusability studies show that the ZnS quantum dots can be reused five times without a significant reduction in degradation efficiency.

6.
Molecules ; 25(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916776

RESUMO

The demand for water is predicted to increase significantly over the coming decades; thus, there is a need to develop an inclusive wastewater decontaminator for the effective management and conservation of water. Magnetic oxide nanocomposites have great potentials as global and novel remediators for wastewater treatment, with robust environmental and economic gains. Environment-responsive nanocomposites would offer wide flexibility to harvest and utilize massive untapped natural energy sources to drive a green economy in tandem with the United Nations Sustainable Development Goals. Recent attempts to engineer smart magnetic oxide nanocomposites for wastewater treatment has been reported by several researchers. However, the magnetic properties of superparamagnetic nanocomposite materials and their adsorption properties nexus as fundamental to the design of recyclable nanomaterials are desirable for industrial application. The potentials of facile magnetic recovery, ease of functionalization, reusability, solar responsiveness, biocompatibility and ergonomic design promote the application of magnetic oxide nanocomposites in wastewater treatment. The review makes a holistic attempt to explore magnetic oxide nanocomposites for wastewater treatment; futuristic smart magnetic oxides as an elixir to global water scarcity is expounded. Desirable adsorption parameters and properties of magnetic oxides nanocomposites are explored while considering their fate in biological and environmental media.


Assuntos
Magnetismo , Nanopartículas Metálicas/química , Nanocompostos/química , Óxidos/química , Águas Residuárias/química , Purificação da Água/métodos , Grafite/química , Indústrias , Nanotecnologia , Compostos Orgânicos , Poluentes Químicos da Água/análise
7.
Molecules ; 25(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781741

RESUMO

Cu(II) and Zn(II) morpholinyldithiocarbamato complexes, formulated as [Cu(MphDTC)2] and [Zn(µ-MphDTC)2(MphDTC)2], where MphDTC is morpholinyldithiocarbamate were synthesized and characterized by elemental analysis, spectroscopic techniques and single-crystal X-ray crystallography. The molecular structure of the Cu(II) complex revealed a mononuclear compound in which the Cu(II) ion was bonded to two morpholinyl dithiocarbamate ligands to form a four-coordinate distorted square planar geometry. The molecular structure of the Zn(II) complex was revealed to be dinuclear, and each metal ion was bonded to two morpholinyl dithiocarbamate bidentate anions, one acting as chelating ligand, the other as a bridge between the two Zn(II) ions. The anticancer activity of the morpholinyldithiocarbamate ligand, Cu(II) and Zn(II) complexes were evaluated against renal (TK10), melanoma (UACC62) and breast (MCF7) cancer cells by a Sulforhodamine B (SRB) assay. Morpholinyldithiocarbamate was more active than the standard drug parthenolide against renal and breast cancer cell lines, and [Zn(µ-MphDTC)2(MphDTC)2] was the most active complex against breast cancer. The copper(II) complex had a comparable activity with the standard against renal and breast cancer cell lines but showed an enhanced potency against melanoma when compared to parthenolide.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cobre/química , Tiocarbamatos/química , Zinco/química , Antineoplásicos/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Complexos de Coordenação/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Molecular
8.
J Environ Sci (China) ; 64: 264-275, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29478648

RESUMO

We herein report the removal of amodiaquine, an emerging drug contaminant from aqueous solution using [Zn2(fum)2(bpy)] and [Zn4O(bdc)3] (fum=fumaric acid; bpy=4,4-bipyridine; bdc=benzene-1,4-dicarboxylate) metal-organic frameworks (MOFs) as adsorbents. The adsorbents were characterized by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, and powder X-ray diffraction (PXRD). Adsorption process for both adsorbents were found to follow the pseudo-first-order kinetics, and the adsorption equilibrium data fitted best into the Freundlich isotherm with the R2 values of 0.973 and 0.993 obtained for [Zn2(fum)2(bpy)] and [Zn4O(bdc)3] respectively. The maximum adsorption capacities foramodiaquine in this study were found to be 0.478 and 47.62mg/g on the [Zn2(fum)2(bpy)] and [Zn4O(bdc)3] MOFs respectively, and were obtained at pH of 4.3 for both adsorbents. FT-IR spectroscopy analysis of the MOFs after the adsorption process showed the presence of the drug. The results of the study showed that the prepared MOFs could be used for the removal of amodiaquine from wastewater.


Assuntos
Amodiaquina/análise , Estruturas Metalorgânicas/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Adsorção , Amodiaquina/química , Ácidos Carboxílicos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Difração de Raios X , Zinco/química
9.
Int J Mol Sci ; 17(1)2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26742030

RESUMO

The current work reports the synthesis, spectroscopic studies, antiradical and antiproliferative properties of four ruthenium(III) complexes of heterocyclic tridentate Schiff base bearing a simple 2',4'-dihydroxyacetophenone functionality and ethylenediamine as the bridging ligand with RCHO moiety. The reaction of the tridentate ligands with RuCl3·3H2O lead to the formation of neutral complexes of the type [Ru(L)Cl2(H2O)] (where L = tridentate NNO ligands). The compounds were characterized by elemental analysis, UV-vis, conductivity measurements, FTIR spectroscopy and confirmed the proposed octahedral geometry around the Ru ion. The Ru(III) compounds showed antiradical potentials against 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, with DPPH scavenging capability in the order: [(PAEBOD)RuCl2] > [(BZEBOD)RuCl2] > [(MOABOD)RuCl2] > [Vit. C] > [rutin] > [(METBOD)RuCl2], and ABTS radical in the order: [(PAEBOD)RuCl2] < [(MOABOD)RuCl2] < [(BZEBOD)RuCl2] < [(METBOD)RuCl2]. Furthermore, in vitro anti-proliferative activity was investigated against three human cancer cell lines: renal cancer cell (TK-10), melanoma cancer cell (UACC-62) and breast cancer cell (MCF-7) by SRB assay.


Assuntos
Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Sequestradores de Radicais Livres/química , Compostos Heterocíclicos/química , Rutênio/química , Bases de Schiff/química , Antineoplásicos/farmacologia , Benzotiazóis/química , Compostos de Bifenilo/química , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Sequestradores de Radicais Livres/farmacologia , Compostos Heterocíclicos/farmacologia , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Picratos/química , Rutênio/farmacologia , Bases de Schiff/farmacologia , Ácidos Sulfônicos/química
10.
Molecules ; 20(6): 9788-802, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26023939

RESUMO

Co(II), Ni(II), Zn(II) and Cu(II) complexes of (3E)-3-[(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)imino]-1-phenylbutan-1-one (DEPH2) derived from ethylenediamine, 2',4'-dihydroxyacetophenone and 1-phenylbutane-1,3-dione have been synthesized and characterized by elemental analysis, FTIR, UV-Visible spectroscopy, and screened to establish their potential as antibacterial agents, antioxidants and DPPH radical scavengers. The FTIR spectra showed that the ligand behaves as a dibasic tetradentate ligand with the dioxygen-dinitrogen donor atom system oriented towards the central metal ion. The analytical and spectroscopic data suggest a square planar geometry for Cu(II) and Ni(II) complexes and an octahedral geometry for the Co(II) complex. The ligand and their metal complexes were screened for antibacterial activity against Gram (+) and Gram (-) bacteria by the agar well diffusion method. In addition, the antioxidant activities of the complexes were also investigated through their scavenging effect on DPPH and ABTS radicals. The obtained IC50 value of the DPPH activity for the copper complex (2.08 ± 0.47 µM) and that of the ABTS activity for the copper complex (IC50 = 2.11 + 1.69 µM) were higher than the values obtained for the other compounds.


Assuntos
Antibacterianos/química , Antioxidantes/química , Complexos de Coordenação/química , Cobre/química , Níquel/química , Bases de Schiff/química , Acetofenonas/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Butanonas/química , Cátions Bivalentes , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Etilenodiaminas/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Picratos/antagonistas & inibidores , Bases de Schiff/síntese química , Bases de Schiff/farmacologia , Ácidos Sulfônicos/antagonistas & inibidores
11.
ScientificWorldJournal ; 2014: 570864, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24883408

RESUMO

With the aim of developing new molecular devices having long-range electron transfer in artificial systems and as photosensitizers, a series of homoleptic ruthenium(II) bisterpyridine complexes bearing one to three anthracenyl units sandwiched between terpyridine and 2-methyl-2-butenoic acid group are synthesized and characterized. The complexes formulated as bis-4'-(9-monoanthracenyl-10-(2-methyl-2-butenoic acid) terpyridyl) ruthenium(II) bis(hexafluorophosphate) (RBT1), bis-4'-(9-dianthracenyl-10-(2-methyl-2-butenoic acid) terpyridyl) ruthenium(II) bis(hexafluorophosphate) (RBT2), and bis-4'-(9-trianthracenyl-10-(2-methyl-2-butenoic acid) terpyridyl) ruthenium(II) bis(hexafluorophosphate) (RBT3) were characterized by elemental analysis, FT-IR, UV-Vis, photoluminescence, (1)H and (13)C NMR spectroscopy, and electrochemical techniques by elemental analysis, FT-IR, UV-Vis, photoluminescence, (1)H and (13)C NMR spectroscopy, and electrochemical techniques. The cyclic voltammograms (CVs) of (RBT1), (RBT2), and (RBT3) display reversible one-electron oxidation processes at E 1/2 = 1.13 V, 0.71 V, and 0.99 V, respectively (versus Ag/AgCl). Based on a general linear correlation between increase in the length of π-conjugation bond and the molar extinction coefficients, the Ru(II) bisterpyridyl complexes show characteristic broad and intense metal-to-ligand charge transfer (MLCT) band absorption transitions between 480-600 nm, ε = 9.45 × 10(3) M(-1) cm(-1), and appreciable photoluminescence spanning the visible region.


Assuntos
Compostos de Rutênio/síntese química , Espectroscopia Dielétrica , Eletroquímica/métodos , Espectroscopia de Ressonância Magnética , Fotoquímica/métodos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Compostos de Rutênio/química , Energia Solar , Espectrofotometria Infravermelho
12.
Molecules ; 19(8): 12421-60, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25153864

RESUMO

A number of novel ruthenium(II) polypyridine complexes have been designed and synthesized for use as photosensitizers in dye-sensitized solar cells (DSSCs) due to their rich photophysical properties such as intense absorption, long-lived lifetimes, high emission quantum yields and unique redox characteristics. Many of these complexes exhibit photophysical behavior that can be readily controlled through a careful choice of ligands and/or substituents. With this perspective, we review the design and general synthetic methods of some polypyridine ligands based on bipyridine, phenanthroline, terpyridine and quaterpyridine with/without anchoring groups with a view to correlate functionality of ligand structures with the observed photophysical, electroredox and power conversion efficiency of some examples of Ru(II) polypyridyl complexes that have been reported andparticularly used in the DSSCs applications. The main interest, however, is focused on showing the development of new polypyridine ligand materials containing long-range electron transfer motifs such as the alkenyl, alkynyl and polyaromatic donor functionalities.


Assuntos
Complexos de Coordenação/química , Piridinas/química , Rutênio/química , Conservação de Recursos Energéticos , Humanos , Ligantes , Oxirredução , Processos Fotoquímicos , Energia Solar
13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(9): 2305-19, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25532317

RESUMO

In this paper the spectroscopic and the geometric properties of four ligands with pyrazole unit are studied at both experimental and computational levels. The computational results are perfectly in good agreement with the experimental results especially in terms of the IR, H-NMR and 13C-NMR shifts. The spectroscopic features as well as the computed properties help to establish the successful synthesis of ligands bdmpzm and bdmpza. The theoretical and the experimental IR and Raman significantly help in distinguishing the four ligands. The results show that the Raman spectral is better applicable in characterising the CH3 deformation, the C-H, CNN and CCNNout of the ligands but vibrations like N-H in dmpz and O-H, C=O in bdmpza are observed to be Raman inactive. A significant variations are observed among the two available * N atoms characterising the bidentate features of bdmpzm, bdmpza and bdcpzm which indicates a possible different affinities for metal coordination: Also the result suggest that bdmpza will be the best starting material for NLO application than other while bdcpzm is predicted to have potential of been a poor coordinating ligand. The computed variations in the properties of * N atoms that are the characteristic features of their power of coordination can be of immense help since these type of ligands have a wide application in transition metal coordination.

14.
Discov Nano ; 19(1): 158, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342049

RESUMO

Nanomaterials are an emerging class of compounds with potential to advance technology for wastewater treatment. There are many toxic substances in industrial wastewater that are dangerous to the aquatic ecosystem and public health. These pollutants require the development of novel techniques to remove them from the environment. Iron oxide nanoparticles are being studied and develop as new technology to address the problem of environmental pollution due to their unique properties and effectiveness against different kind of pollutants. A variety of modified iron oxide nanoparticles have been developed through extensive research that mitigates the shortcomings of aggregation or oxidation and enhances their efficiency as novel remediator against environmental pollutants. In this review, we present synthetic approaches used for the preparation of iron oxide nanoparticles and their corresponding nanocomposites, along with the processes in which the materials are used as adsorbent/photocatalysts for environmental remediation. Applications explored includes adsorption of dyes, photocatalytic degradation of dyes, and adsorption of heavy metal ions. The use of iron oxides nanocomposite in real wastewater samples and recyclability of adsorbents and photocatalysts were also explored.

15.
RSC Adv ; 14(35): 25759-25770, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39148758

RESUMO

A porous copper(ii) metal-organic framework (MOF) of 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine(N3ttb) and 5-nitroisophthalic acid (npd) formulated as [Cu(npd)(N3ttb)]·(DMF)(H2O) 1 (DMF = dimethylformamide) was synthesized and characterized by elemental analyses, spectroscopic techniques, single crystal X-ray crystallography, and scanning electron microscopy. Single crystal X-ray crystallographic analysis of the copper(ii) metal-organic framework reveals a monoclinic crystal system with space group P21/c. The copper(ii) ion is in a five-coordinate geometry consisting of three meridional nitrogen atoms of 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine and two oxygen atoms of 5-nitroisophthalic acid to form a square pyramidal structure. The compound was functionalized with ethylenediamine (ED) to form [Cu(npd)(N3ttb)]-ED 2 that was characterized by FT-IR, PXRD, SEM-EDX and BET and the drug loading capacity was investigated and compared with that of as-synthesized MOFs. The amount of ibuprofen loaded was 916.44 mg g-1 (15.27%) & 1530.20 mg g-1 (25.50%) over 1 and 2, respectively. The results indicate that the functionalized MOFs 2 have a higher loading capacity for ibuprofen than 1 by 613.76 mg g-1 (10.23%), which could be ascribed to the acid-base interactions in the functionalized molecules. The results show that [Cu(npd)(N3ttb)]-ED 2 is a better drug transporter than [Cu(npd)(N3ttb)]·(DMF)(H2O) 1 due to the presence of an amine functional group that interacts with the acid group on the ibuprofen through non-covalent bonds interactions.

16.
ScientificWorldJournal ; 2013: 907562, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24294141

RESUMO

Substituted thiourea ligands are of interest because they possess various donor sites for metal ions and their application in separation of metal ions and as antimicrobial agents. The coordination of the sulfur donor atom led to interest in them as precursor for semiconductor nanoparticles. In this study, cadmium(II) complex of diethylthiourea was synthesized and characterized by elemental analysis, FTIR, and X-ray crystallography. Single crystal X-ray structure of the complex showed that the octahedral geometry around the Cd ion consists of two molecules of diethylthiourea acting as monodentate ligands and two chelating acetate ions. The thermal decomposition of the compound showed that it decomposed to give CdS. The compound was thermolysed in hexadecylamine (HDA) to prepare HDA-capped CdS nanoparticles. The absorption spectrum showed blue shifts in its absorption band edges which clearly indicated quantum confinement effect, and the emission spectrum showed characteristic band edge luminescence. The broad diffraction peaks of the XRD pattern showed the materials to be of the nanometric size.


Assuntos
Compostos de Cádmio/química , Nanopartículas Metálicas , Sulfetos/química , Cristalografia por Raios X , Ligação de Hidrogênio , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
17.
Molecules ; 18(9): 10829-56, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24008244

RESUMO

Unlike organic molecules, reports on docking of metal complexes are very few; mainly due to the inadequacy of force fields in docking packages to appropriately characterize the metal atoms that consequentially hinder the rational design of metal-based drug complexes. In this study we have made used Molegro and Autodock to predict the anticancer activities of selected Ru(II) complexes against twelve anticancer targets. We observed that introducing the quantum calculated atomic charges of the optimized geometries significantly improved the docking predictions of these anticancer metallocompounds. Despite several limitations in the docking of metal-based complexes, we obtained results that are highly correlated with the available experimental results. Most of our newly proposed metallocompounds are found theoretically to be better anticancer metallocompounds than all the experimentally proposed RAPTA complexes. An interesting features of a strong interactions of new modeled of metallocompounds against the two base edges of DNA strands suggest similar mechanisms of anticancer activities similar to that of cisplatin. There is possibility of covalent bonding between the metal center of the metallocompounds and the residues of the receptors DNA-1, DNA-2, HDAC7, HIS and RNR. However, the general results suggest the possibility of metals positioning the coordinated ligands in the right position for optimal receptor interactions and synergistic effects, rather than forming covalent bonds.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Simulação de Acoplamento Molecular , Rutênio/química , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Ligação Proteica , Receptores de Superfície Celular/química
18.
Molecules ; 18(4): 3760-78, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23529035

RESUMO

In cancer chemotherapy, metal-based complexes have been recognized as the most promising means of inhibiting cancer growth due to the successful application of cis-platin and its derivatives above many of the existing organic anticancer agents. The limitations in their rational design can be traced to the complexity of the mechanism of their operations, lack of proper knowledge of their targets and lack of force fields in docking packages to appropriately define the metal centre of the organometallic complexes. In this paper, some of the promising anticancer complexes of Ru(II) such as the rapta-based complexes formulated as [Ru(η6-p-cymene)L2(pta)] and those with unusual ligands are considered. CatB and kinases which have been experimentally confirmed as possible targets of the complexes are also predicted by the three methods as one of the most targeted receptors while TopII and HDAC7 are predicted by two and one of the methods as best targets. The interesting features of the binding of the complexes show that some of the complexes preferentially target specific macromolecules than the others, which is an indication of their specificity and possibility of their therapeutic combination without severe side effects that may come from competition for the same target. Also, introduction of unusual ligands is found to significantly improve the activities of most of the complexes studied. Strong correlations are observed for the predicted binding sites and the orientation of the complexes within the binding site by the three methods of docking. However there are disparities in the ranking of the complexes by the three method of docking, especially that of Glide.


Assuntos
Antineoplásicos/química , Rutênio/química , Antineoplásicos/farmacologia , Sítios de Ligação , Biologia Computacional , Complexos de Coordenação/análise , Cimenos , Ouro , Humanos , Ligantes , Substâncias Macromoleculares , Estrutura Molecular , Monoterpenos/química
19.
Nanomaterials (Basel) ; 13(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513078

RESUMO

Octylamine (OTA), 1-dodecanethiol (DDT), and tri-n-octylphosphine (TOP) capped magnetite nanoparticles were prepared by co-precipitation method. Powder X-ray diffraction patterns confirmed inverse spinel crystalline phases for the as-prepared iron oxide nanoparticles. Transmission electron microscopic micrographs showed iron oxide nanoparticles with mean particle sizes of 2.1 nm for Fe3O4-OTA, 5.0 nm for Fe3O4-DDT, and 4.4 nm for Fe3O4-TOP. The energy bandgap of the iron oxide nanoparticles ranges from 2.25 eV to 2.76 eV. The iron oxide nanoparticles were used as photocatalysts for the degradation of methylene blue with an efficiency of 55.5%, 58.3%, and 66.7% for Fe3O4-OTA, Fe3O4-DDT, and Fe3O4-TOP, respectively, while for methyl orange the degradation efficiencies were 63.8%, 47.7%, and 74.1%, respectively. The results showed that tri-n-octylphosphine capped iron oxide nanoparticles are the most efficient iron oxide nano-photocatalysts for the degradation of both dyes. Scavenger studies show that electrons (e-) and hydroxy radicals (•OH) contribute significantly to the photocatalytic degradation reaction of both methylene blue and methyl orange using Fe3O4-TOP nanoparticles. The influence of the dye solution's pH on the photocatalytic reaction reveals that a pH of 10 is the optimum for methylene blue degradation, whereas a pH of 2 is best for methyl orange photocatalytic degradation using the as-prepared iron oxide nano-photocatalyst. Recyclability studies revealed that the iron oxide photocatalysts can be recycled three times without losing their photocatalytic activity.

20.
ACS Omega ; 8(28): 24750-24760, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483185

RESUMO

We report the preparation and crystal structures of bis(diallydithiocarbamato)zinc(II) and silver(I) complexes. The compounds were used as single-source precursors to prepare zinc sulfide and silver sulfide nanophotocatalysts. The molecular structure of bis(diallydithiocarbamato)zinc(II) consists of a dimeric complex in which each zinc(II) ion asymmetrically coordinates with two diallydithiocarbamato anions in a bidentate chelating mode, and the centrosymmetrically related molecule is bridged through the S-atom that is chelated to the adjacent zinc(II) ion to form a distorted trigonal bipyramidal geometry around the zinc(II) ions. The molecular structure of bis(diallydithiocarbamato)silver(I) formed a cluster complex consisting of a trimetric Ag3S3 molecule in which the diallydithiocarbamato ligand is coordinated to all the Ag(I) ions. The complexes were thermolyzed in dodecylamine, hexadecylamine, and octadecylamine (ODA) to prepare zinc sulfide and silver sulfide nanoparticles. The powder X-ray diffraction patterns of the zinc sulfide nanoparticles correspond to the hexagonal wurtzite while silver sulfide is in the acanthite crystalline phase. The high-resolution transmission electron microscopy images show that quantum dot zinc sulfide nanoparticles are obtained with particle sizes ranging between 1.98 and 5.49 nm, whereas slightly bigger silver sulfide nanoparticles are obtained with particle sizes of 2.70-13.69 nm. The surface morphologies of the ZnS and AgS nanoparticles capped with the same capping agent are very similar. Optical studies revealed that the absorption band edges of the as-prepared zinc sulfide and silver sulfide nanoparticles were blue-shifted with respect to their bulk materials with some surface defects. The zinc sulfide and silver sulfide nanoparticles were used as nanophotocatalysts for the degradation of bromothymol blue (BTB) and bromophenol blue (BPB). ODA-capped zinc sulfide is the most efficient photocatalyst and degraded 87% of BTB and 91% of BPB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA