RESUMO
Transforming growth factor (TGF)-ß signaling in humans is stringently regulated to prevent excessive TGF-ß signaling. In tumors, TGF-ß signaling can both negatively and positively regulate tumorigenesis dependent on tumor type, but the reason for these opposite effects is unclear. TGF-ß signaling is mainly mediated via the Smad-dependent pathway, and herein we found that PDZK1-interacting protein 1 (PDZK1IP1) interacts with Smad4. PDZK1IP1 inhibited both the TGF-ß and the bone morphogenetic protein (BMP) pathways without affecting receptor-regulated Smad (R-Smad) phosphorylation. Rather than targeting R-Smad phosphorylation, PDZK1IP1 could interfere with TGF-ß- and BMP-induced R-Smad/Smad4 complex formation. Of note, PDZK1IP1 retained Smad4 in the cytoplasm of TGF-ß-stimulated cells. To pinpoint PDZK1IP1's functional domain, we created several PDZK1IP1 variants and found that its middle region, from Phe40 to Ala49, plays a key role in its Smad4-regulating activity. PDZK1IP1 knockdown enhanced the expression of the TGF-ß target genes Smad7 and prostate transmembrane protein androgen-induced (TMEPAI) upon TGF-ß stimulation. In contrast, PDZK1IP1 overexpression suppressed TGF-ß-induced reporter activities, cell migration, and cell growth inhibition. In a xenograft tumor model in which TGF-ß was previously shown to elicit tumor-promoting effects, PDZK1IP1 gain of function decreased tumor size and increased survival rates. Taken together, these findings indicate that PDZK1IP1 interacts with Smad4 and thereby suppresses the TGF-ß signaling pathway.
Assuntos
Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Masculino , Camundongos Endogâmicos BALB C , FosforilaçãoRESUMO
Transforming growth factor (TGF)-ß signaling is deliberately regulated at multiple steps in its pathway from the extracellular microenvironment to the nucleus. However, how TGF-ß signaling is activated or attenuated is not fully understood. We recently identified transmembrane prostate androgen-induced RNA (TMEPAI), which is involved in a negative feedback loop of TGF-ß signaling. When we searched for a family molecule(s) for TMEPAI, we found C18ORF1, which, like TMEPAI, possesses two PY motifs and one Smad-interacting motif (SIM) domain. As expected, C18ORF1 could block TGF-ß signaling but not bone morphogenetic protein signaling. C18ORF1 bound to Smad2/3 via its SIM and competed with the Smad anchor for receptor activation for Smad2/3 binding to attenuate recruitment of Smad2/3 to the TGF-ß type I receptor (also termed activin receptor-like kinase 5 (ALK5)), in a similar fashion to TMEPAI. Knockdown of C18ORF1 prolonged duration of TGF-ß-induced Smad2 phosphorylation and concomitantly potentiated the expression of JunB, p21, and TMEPAI mRNAs induced by TGF-ß. Consistently, TGF-ß-induced cell migration was enhanced by the knockdown of C18ORF1. These results indicate that the inhibitory function of C18ORF1 on TGF-ß signaling is similar to that of TMEPAI. However, in contrast to TMEPAI, C18ORF1 was not induced upon TGF-ß signaling. Thus, we defined C18ORF1 as a surveillant of steady state TGF-ß signaling, whereas TMEPAI might help C18ORF1 to inhibit TGF-ß signaling in a coordinated manner when cells are stimulated with high levels of TGF-ß.