Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 33(2): 294-300, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35073056

RESUMO

This study describes the synthesis, surface analysis, and biological evaluation of bioactive titanium surfaces. The aim was to achieve an improved effect on osteoinduction in dental and orthopedic implants. For this purpose, a chemistry was developed, which allows to bind the bioactive cyclopeptide cRGDfK covalently to biomedically used titanium via polyethylene glycol linkers of different lengths. The chemical process is practicable, robust, and metal-free. The resulting chemically modified titanium plates show improved osteoinductive properties. The modification with cRGDfK targets the integrin αvß3, which is highly expressed in osteoblasts and is essential for many basic functions in the development of bone tissue. The successful immobilization of cRGDfK on titanium surfaces has been demonstrated by contact angle measurements and X-ray photoelectron spectroscopy. We show in in vitro studies that the presence of the cRGDfK peptide on titanium surfaces has a positive effect on bone formation.


Assuntos
Materiais Biocompatíveis , Titânio , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Oligopeptídeos/química , Osteoblastos , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
2.
Biol Trace Elem Res ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358580

RESUMO

The element boron forms a wide range of borate minerals with different properties. Borate minerals make it possible to design boron-containing molecules with new biological properties in terms of their chemical structure and properties. It is known that boron compounds have antioxidant, anti-inflammatory, anti-tumor and anti-cancer properties. This makes boron compounds important for the future development of boron chemotherapeutics, boron supplements and new drugs. Reliable scientific studies on boron compounds will facilitate the clear presentation of their functions in its biological applications and metabolism. In this study, boron monoester and boron diester structures were synthesized with salicylic acid ligand. To stabilize boron ester structures, Na+, K+, Mg2+, Ca2+ cations were used as counter-ions. Structural properties of the synthesized substances, molecules obtained by crystallization/precipitation from aqueous solutions in solid state, elemental analysis, melting point determination, infrared spectroscopy analysis (FT-IR), thermal analysis (TGA/DTA), mass analysis (GC-MS) and single crystal analysis. Structural properties were tried to be explained by structure analysis (SC-XRD) methods. Additionally, the anticancer potential of boron salicylate esters against the MDA-MB-231 human breast adenocarcinoma cell line was examined. The K-B salicylate diester molecule was found to have the most potential potency with the lowest IC50 value against the MDA-MB-231 cell line. The anticancer potential of boron salicylate esters can be further investigated with other cancer models with the combination of anticancer drugs. It is also thought that the mechanism of action of these molecules may help reveal their further applications.

3.
Biomater Adv ; 148: 213382, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36963343

RESUMO

In this study, Zn doped hydroxyapatite (Zn HA)/boron nitride nanofiber (BNNF)/poly-ε-caprolactone (PCL) composite aligned fibrous scaffolds are produced with rotary jet spinning (RJS) for bone tissue engineering applications. It is hypothesized that addition of Zn HA and BNNF will contribute to cell viability as well as mechanical and osteogenic properties of the PCL scaffolds. Zn HA was synthesized by mixing Ca and P sources followed by sonication and aging whereas BNNF was obtained by the reaction of melamine with boric acid followed by freeze-drying for annealing of fibers. It is found that incorporation of both Zn HA and BNNF in PCL fibers resulted in higher calcium phosphate (CaP) precipitation on the scaffolds. Also, in vitro cell culture studies showed that presence of both Zn HA and BNNF also had synergistic effect for enhanced proliferation and osteogenic activity of Saos-2 cells. Mechanical properties of PCL-Zn HA-BNNF were found similar to that of non-load bearing bones. Furthermore, the presence of Zn HA and BNNF had synergistic effects to cell attachment, proliferation and spreading without causing cytotoxic effect on cells. The highest ALP activity was obtained in the PCL-Zn HA- BNNF group at days 7 and 14 due to release of zinc, calcium, phosphate and boron. Considering its mechanical and bioactivity properties, PCL-Zn HA-BNNF composite scaffolds hold promise as non-load bearing bone substitutes.


Assuntos
Nanofibras , Engenharia Tecidual , Engenharia Tecidual/métodos , Durapatita/farmacologia , Alicerces Teciduais , Zinco
4.
J Periodontol ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787060

RESUMO

BACKGROUND: Stem cell-based approaches in regenerative periodontal therapy have been used in different experimental models. In this study, the effect of local application of gingival mesenchymal stem cells (GMSC) in fibroin/chitosan oligosaccharide lactate hydrogel (F/COS) on periodontal regeneration was evaluated using experimental periodontitis model in rats. METHODS: Mesenchymal stem cells were isolated from the gingiva of rats and characterized. Viability tests and confocal imaging of GMSC in hydrogels were performed. Healthy control without periodontitis (Health; H; n=10), control with periodontitis but no application (Periodontitis; P; n=10), only hydrogel application (F/COS; n=10), and GMSC+F/COS (n=10) four groups were formed for in vivo studies. Experimental periodontitis was created with silk sutures around the maxillary second molars. GMSC labeled with green fluorescent protein (GFP) (250,000 cells/50 µL) in F/COS were applied to the defect. Animals were sacrificed at 2nd and 8th weeks and maxillae of the animals were evaluated by micro-computed tomography (micro-CT) and histologically. The presence of GFP-labeled GMSC was confirmed at the end of 8 weeks. RESULTS: Micro-CT analysis showed statistically significant new bone formation in the F/COS+GMSC treated group compared with the P group at the end of 8 weeks (p < 0.05). New bone formation was also observed in the F/COS group, but the statistical analysis revealed that this difference was not significant when compared with the P group (p > 0.05). Long junctional epithelium formation was less in the F/COS+GMSC group compared with the P group. Periodontal ligament and connective tissue were well-organized in F/COS+GMSC group. CONCLUSION: The results showed that local GMSC application in hydrogel contributed to the formation of new periodontal ligament and alveolar bone in rats with experimental periodontitis. Since gingiva is easly accessible tissue, it is promising for autologous cell-based treatments in clinical applications.

5.
ACS Biomater Sci Eng ; 8(7): 3038-3053, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35708275

RESUMO

Osseointegration of implants depends on several intertwined factors: osteogenesis, angiogenesis, and immunomodulation. Lately, novel reinforcements allowing faster bonding with osseous tissue have been explored intensively. In this study, we hypothesized the use of boron as a major multifunctional ion to confer versatility to calcium-deficient hydroxyapatite (cHA) synthesized by a wet precipitation/microwave reflux method. By synthesis of boron-doped calcium-deficient hydroxyapatite (BcHA), we expected to obtain an osteoimmunomodulatory and regenerative nanoreinforcement. BcHA was found to possess a pure HA phase, a greater surface area (66.41 m2/g, p = 0.028), and cumulative concentrations of Ca (207.87 ± 6.90 mg/mL, p < 0.001) and B (112.70 ± 11.79 mg/mL, p < 0.001) released in comparison to cHA. Osteogenic potential of BcHA was analyzed using human fetal osteoblasts. BcHA resulted in a drastic increase in the ALP activity (1.11 ± 0.11 mmol/gDNA·min, p < 0.001), biomineralization rate, and osteogenic gene expressions compared to cHA. BcHA angiogenic potential was investigated using human umbilical cord vein endothelial cells. Significantly, the highest VEGF-A release (1111.14 ± 87.82 in 4 h, p = 0.009) and angiogenic gene expressions were obtained for BcHA-treated samples. These samples were also observed to induce a more prominent and highly branched tube network. Finally, inflammatory and inflammasome responses toward BcHA were elucidated using human monocyte-derived macrophages differentiated from THP-1s. BcHA exhibited lower CAS-1 release (50.18 ± 5.52 µg/gDNA µg/gDNA) and higher IL-10 release (126.97 ± 15.05 µg/gDNA) than cHA. In addition, BcHA treatment led to increased expression of regenerative genes such as VEGF-A, RANKL, and BMP-2. In vitro results demonstrated that BcHA has tremendous osteogenic, angiogenic, and immunomodulatory potential to be employed as a "versatile-in-all-trades" modality in various bone tissue engineering applications.


Assuntos
Boro , Durapatita , Boro/farmacologia , Cálcio , Proliferação de Células , Durapatita/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunomodulação , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA