Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(17): 8926-8939, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30113698

RESUMO

The Artemis nuclease and tyrosyl-DNA phosphodiesterase (TDP1) are each capable of resolving protruding 3'-phosphoglycolate (PG) termini of DNA double-strand breaks (DSBs). Consequently, both a knockout of Artemis and a knockout/knockdown of TDP1 rendered cells sensitive to the radiomimetic agent neocarzinostatin (NCS), which induces 3'-PG-terminated DSBs. Unexpectedly, however, a knockdown or knockout of TDP1 in Artemis-null cells did not confer any greater sensitivity than either deficiency alone, indicating a strict epistasis between TDP1 and Artemis. Moreover, a deficiency in Artemis, but not TDP1, resulted in a fraction of unrepaired DSBs, which were assessed as 53BP1 foci. Conversely, a deficiency in TDP1, but not Artemis, resulted in a dramatic increase in dicentric chromosomes following NCS treatment. An inhibitor of DNA-dependent protein kinase, a key regulator of the classical nonhomologous end joining (C-NHEJ) pathway sensitized cells to NCS, but eliminated the sensitizing effects of both TDP1 and Artemis deficiencies. These results suggest that TDP1 and Artemis perform different functions in the repair of terminally blocked DSBs by the C-NHEJ pathway, and that whereas an Artemis deficiency prevents end joining of some DSBs, a TDP1 deficiency tends to promote DSB mis-joining.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA/genética , Endonucleases/genética , Epistasia Genética , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases/genética , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/farmacologia , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Endonucleases/antagonistas & inibidores , Endonucleases/deficiência , Células HCT116 , Células HEK293 , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/deficiência , Inibidores da Síntese de Ácido Nucleico/farmacologia , Diester Fosfórico Hidrolases/deficiência , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Zinostatina/farmacologia
2.
Nucleic Acids Res ; 42(5): 3125-37, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371269

RESUMO

To track the processing of damaged DNA double-strand break (DSB) ends in vivo, a method was devised for quantitative measurement of 3'-phosphoglycolate (PG) termini on DSBs induced by the non-protein chromophore of neocarzinostatin (NCS-C) in the human Alu repeat. Following exposure of cells to NCS-C, DNA was isolated, and labile lesions were chemically stabilized. All 3'-phosphate and 3'-hydroxyl ends were enzymatically capped with dideoxy termini, whereas 3'-PG ends were rendered ligatable, linked to an anchor, and quantified by real-time Taqman polymerase chain reaction. Using this assay and variations thereof, 3'-PG and 3'-phosphate termini on 1-base 3' overhangs of NCS-C-induced DSBs were readily detected in DNA from the treated lymphoblastoid cells, and both were largely eliminated from cellular DNA within 1 h. However, the 3'-PG termini were processed more slowly than 3'-phosphate termini, and were more persistent in tyrosyl-DNA phosphodiesterase 1-mutant SCAN1 than in normal cells, suggesting a significant role for tyrosyl-DNA phosphodiesterase 1 in removing 3'-PG blocking groups for DSB repair. DSBs with 3'-hydroxyl termini, which are not directly induced by NCS-C, were formed rapidly in cells, and largely eliminated by further processing within 1 h, both in Alu repeats and in heterochromatic α-satellite DNA. Moreover, absence of DNA-PK in M059J cells appeared to accelerate resolution of 3'-PG ends.


Assuntos
Quebras de DNA de Cadeia Dupla , Glicolatos/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Linhagem Celular Transformada , DNA/química , Proteína Quinase Ativada por DNA/deficiência , Humanos , Diester Fosfórico Hidrolases/deficiência , Ataxias Espinocerebelares/genética , Zinostatina/toxicidade
3.
Nucleic Acids Res ; 37(12): 4055-62, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19420065

RESUMO

XLF/Cernunnos is a core protein of the nonhomologous end-joining pathway of DNA double-strand break repair. To better define the role of Cernunnos in end joining, whole-cell extracts were prepared from Cernunnos-deficient human cells. These extracts effected little joining of DNA ends with cohesive 5' or 3' overhangs, and no joining at all of partially complementary 3' overhangs that required gap filling prior to ligation. Assays in which gap-filled but unligated intermediates were trapped using dideoxynucleotides revealed that there was no gap filling on aligned DSB ends in the Cernunnos-deficient extracts. Recombinant Cernunnos protein restored gap filling and end joining of partially complementary overhangs, and stimulated joining of cohesive ends more than twentyfold. XLF-dependent gap filling was nearly eliminated by immunodepletion of DNA polymerase lambda, but was restored by addition of either polymerase lambda or polymerase mu. Thus, Cernunnos is essential for gap filling by either polymerase during nonhomologous end joining, suggesting that it plays a major role in aligning the two DNA ends in the repair complex.


Assuntos
DNA Polimerase beta/metabolismo , Enzimas Reparadoras do DNA/fisiologia , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Extratos Celulares , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Fosforilação , Serina/metabolismo
4.
DNA Repair (Amst) ; 8(5): 654-63, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19211312

RESUMO

A homozygous H493R mutation in the active site of tyrosyl-DNA phosphodiesterase (TDP1) has been implicated in hereditary spinocerebellar ataxia with axonal neuropathy (SCAN1), an autosomal recessive neurodegenerative disease. However, it is uncertain how the H493R mutation elicits the specific pathologies of SCAN1. To address this question, and to further elucidate the role of TDP1 in repair of DNA end modifications and general physiology, we generated a Tdp1 knockout mouse and carried out detailed behavioral analyses as well as characterization of repair deficiencies in extracts of embryo fibroblasts from these animals. While Tdp1(-/-) mice appear phenotypically normal, extracts from Tdp1(-/-) fibroblasts exhibited deficiencies in processing 3'-phosphotyrosyl single-strand breaks and 3'-phosphoglycolate double-strand breaks (DSBs), but not 3'-phosphoglycolate single-strand breaks. Supplementing Tdp1(-/-) extracts with H493R TDP1 partially restored processing of 3'-phosphotyrosyl single-strand breaks, but with evidence of persistent covalent adducts between TDP1 and DNA, consistent with a proposed intermediate-stabilization effect of the SCAN1 mutation. However, H493R TDP1 supplementation had no effect on phosphoglycolate (PG) termini on 3' overhangs of double-strand breaks; these remained completely unprocessed. Altogether, these results suggest that for 3'-phosphoglycolate overhang lesions, the SCAN1 mutation confers loss of function, while for 3'-phosphotyrosyl lesions, the mutation uniquely stabilizes a reaction intermediate.


Assuntos
Adutos de DNA/química , Glicolatos/metabolismo , Mutação/genética , Diester Fosfórico Hidrolases/fisiologia , Fosfotirosina/metabolismo , Ataxias Espinocerebelares/genética , Animais , Southern Blotting , Western Blotting , Catálise , Adutos de DNA/genética , Adutos de DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Teste de Complementação Genética , Masculino , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Ataxias Espinocerebelares/metabolismo
5.
DNA Repair (Amst) ; 68: 12-24, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29807321

RESUMO

Polynucleotide kinase/phosphatase (PNKP) has been implicated in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). To assess the consequences of PNKP deficiency for NHEJ of 3'-phosphate-ended DSBs, PNKP-deficient derivatives of HCT116 and of HeLa cells were generated using CRISPR/CAS9. For both cell lines, PNKP deficiency conferred sensitivity to ionizing radiation as well as to neocarzinostatin (NCS), which specifically induces DSBs bearing protruding 3'-phosphate termini. Moreover, NCS-induced DSBs, detected as 53BP1 foci, were more persistent in PNKP -/- HCT116 cells compared to their wild-type (WT) counterparts. Surprisingly, PNKP-deficient whole-cell and nuclear extracts were biochemically competent in removing both protruding and recessed 3'-phosphates from synthetic DSB substrates, albeit much less efficiently than WT extracts, suggesting an alternative 3'-phosphatase. Measurements by ligation-mediated PCR showed that PNKP-deficient HeLa cells contained significantly more 3'-phosphate-terminated and fewer 3'-hydroxyl-terminated DSBs than parental cells 5-15 min after NCS treatment, but this difference disappeared by 1 h. These results suggest that, despite presence of an alternative 3'-phosphatase, loss of PNKP significantly sensitizes cells to 3'-phosphate-terminated DSBs, due to a 3'-dephosphorylation defect.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , DNA/efeitos dos fármacos , DNA/metabolismo , DNA/efeitos da radiação , Enzimas Reparadoras do DNA/metabolismo , Técnicas de Silenciamento de Genes , Células HCT116 , Células HeLa , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Radiação Ionizante , Zinostatina/toxicidade
6.
DNA Repair (Amst) ; 41: 16-26, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27049455

RESUMO

DNA double-strand breaks induced by ionizing radiation are often accompanied by ancillary oxidative base damage that may prevent or delay their repair. In order to better define the features that make some DSBs repair-resistant, XLF-dependent nonhomologous end joining of blunt-ended DSB substrates having the oxidatively modified nonplanar base thymine glycol at the first (Tg1), second (Tg2), third (Tg3) or fifth (Tg5) positions from one 3' terminus, was examined in human whole-cell extracts. Tg at the third position had little effect on end-joining even when present on both ends of the break. However, Tg as the terminal or penultimate base was a major barrier to end joining (>10-fold reduction in ligated products) and an absolute barrier when present at both ends. Dideoxy trapping of base excision repair intermediates indicated that Tg was excised from Tg1, Tg2 and Tg3 largely if not exclusively after DSB ligation. However, Tg was rapidly excised from the Tg5 substrate, resulting in a reduced level of DSB ligation, as well as slow concomitant resection of the opposite strand. Ligase reactions containing only purified Ku, XRCC4, ligase IV and XLF showed that ligation of Tg3 and Tg5 was efficient and only partially XLF-dependent, whereas ligation of Tg1 and Tg2 was inefficient and only detectable in the presence of XLF. Overall, the results suggest that promoting ligation of DSBs with proximal base damage may be an important function of XLF, but that Tg can still be a major impediment to repair, being relatively resistant to both trimming and ligation. Moreover, it appears that base excision repair of Tg can sometimes interfere with repair of DSBs that would otherwise be readily rejoined.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Timina/análogos & derivados , Células HCT116 , Humanos , Timina/metabolismo
7.
Cell Rep ; 9(4): 1281-91, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25457612

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) kinase is a sensor of different environmental conditions and regulator of cell growth, metabolism, and autophagy. mTORC1 is activated by Rag GTPases, working as RagA:RagB and RagC:RagD heterodimers. Rags control mTORC1 activity by tethering mTORC1 to the lysosomes where it is activated by Rheb GTPase. RagA:RagB, active in its GTP-bound form, is inhibited by GATOR1 complex, a GTPase-activating protein, and GATOR1 is in turn negatively regulated by GATOR2 complex. Sestrins are stress-responsive proteins that inhibit mTORC1 via activation of AMP-activated protein kinase (AMPK) and tuberous sclerosis complex. Here we report an AMPK-independent mechanism of mTORC1 inhibition by Sestrins mediated by their interaction with GATOR2. As a result of this interaction, the Sestrins suppress mTOR lysosomal localization in a Rag-dependent manner. This mechanism is potentially involved in mTORC1 regulation by amino acids, rotenone, and tunicamycin, connecting stress response with mTORC1 inhibition.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácidos/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Peroxidases , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Rotenona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tunicamicina/farmacologia
8.
DNA Repair (Amst) ; 12(6): 422-32, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23602515

RESUMO

Both Metnase and Artemis possess endonuclease activities that trim 3' overhangs of duplex DNA. To assess the potential of these enzymes for facilitating resolution of damaged ends during double-strand break rejoining, substrates bearing a variety of normal and structurally modified 3' overhangs were constructed, and treated either with Metnase or with Artemis plus DNA-dependent protein kinase (DNA-PK). Unlike Artemis, which trims long overhangs to 4-5 bases, cleavage by Metnase was more evenly distributed over the length of the overhang, but with significant sequence dependence. In many substrates, Metnase also induced marked cleavage in the double-stranded region within a few bases of the overhang. Like Artemis, Metnase efficiently trimmed overhangs terminated in 3'-phosphoglycolates (PGs), and in some cases the presence of 3'-PG stimulated cleavage and altered its specificity. The nonplanar base thymine glycol in a 3' overhang severely inhibited cleavage by Metnase in the vicinity of the modified base, while Artemis was less affected. Nevertheless, thymine glycol moieties could be removed by Metnase- or Artemis-mediated cleavage at sites farther from the terminus than the lesion itself. In in vitro end-joining systems based on human cell extracts, addition of Artemis, but not Metnase, effected robust trimming of an unligatable 3'-PG overhang, resulting in a dramatic stimulation of ligase IV- and XLF-dependent end joining. Thus, while both Metnase and Artemis are biochemically capable of resolving a variety of damaged DNA ends for the repair of complex double-strand breaks, Artemis appears to act more efficiently in the context of other nonhomologous end joining proteins.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/metabolismo , Reparo de DNA por Recombinação , Adutos de DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Ligases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases , Glicolatos/metabolismo , Células HEK293 , Células HeLa , Humanos , Timina/análogos & derivados , Timina/metabolismo
9.
Radiat Res ; 174(3): 274-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20726725

RESUMO

Previous work showed that in human nuclear extracts, double-strand break substrates bearing partially complementary (-ACG) 3'-phosphoglycolate (PG)-terminated 3' overhangs are joined by a mechanism involving annealing of the terminal CG dinucleotides, PG removal, single-base gap filling and ligation. However, in these extracts only a minority of the breaks are rejoined, and most of the 3'-PG termini remain intact even after several hours. To determine whether the presence of a persistent 3'-PG prevents patching and ligation of the opposite strand, a substrate was constructed with two -ACG overhangs, one PG-terminated and one hydroxyl-terminated. after incubation in HeLa cell nuclear extracts, two major repair products of similar yield were formed: a fully repaired duplex and a nicked duplex in which the initial 3'-PG terminus remained intact. These results indicate that patching and ligation can proceed to completion in the unmodified strand despite persistence of the 3'-PG-terminated break in the opposite strand. The break in the PG-containing strand could then presumably be rejoined by a single-strand break repair pathway.


Assuntos
Dano ao DNA , Reparo do DNA , DNA/genética , Glicolatos/química , Sequência de Bases , Eletroforese em Gel de Poliacrilamida
10.
DNA Repair (Amst) ; 8(8): 901-11, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19505854

RESUMO

Although tyrosyl-DNA phosphodiesterase (TDP1) is capable of removing blocked 3' termini from DNA double-strand break ends, it is uncertain whether this activity plays a role in double-strand break repair. To address this question, affinity-tagged TDP1 was overexpressed in human cells and purified, and its interactions with end joining proteins were assessed. Ku and DNA-PKcs inhibited TDP1-mediated processing of 3'-phosphoglycolate double-strand break termini, and in the absence of ATP, ends sequestered by Ku plus DNA-PKcs were completely refractory to TDP1. Addition of ATP restored TDP1-mediated end processing, presumably due to DNA-PK-catalyzed phosphorylation. Mutations in the 2609-2647 Ser/Thr phosphorylation cluster of DNA-PKcs only modestly affected such processing, suggesting that phosphorylation at other sites was important for rendering DNA ends accessible to TDP1. In human nuclear extracts, about 30% of PG termini were removed within a few hours despite very high concentrations of Ku and DNA-PKcs. Most such removal was blocked by the DNA-PK inhibitor KU-57788, but approximately 5% of PG termini were removed in the first few minutes of incubation even in extracts preincubated with inhibitor. The results suggest that despite an apparent lack of specific recruitment of TDP1 by DNA-PK, TDP1 can gain access to and can process blocked 3' termini of double-strand breaks before ends are fully sequestered by DNA-PK, as well as at a later stage after DNA-PK autophosphorylation. Following cell treatment with calicheamicin, which specifically induces double-strand breaks with protruding 3'-PG termini, TDP1-mutant SCAN1 (spinocerebellar ataxia with axonal neuropathy) cells exhibited a much higher incidence of dicentric chromosomes, as well as higher incidence of chromosome breaks and micronuclei, than normal cells. This chromosomal hypersensitivity, as well as a small but reproducible enhancement of calicheamicin cytotoxicity following siRNA-mediated TDP1 knockdown, suggests a role for TDP1 in repair of 3'-PG double-strand breaks in vivo.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Glicolatos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Trifosfato de Adenosina/farmacologia , Aminoglicosídeos/farmacologia , Antígenos Nucleares/metabolismo , Morte Celular/efeitos dos fármacos , Extratos Celulares , Cromossomos Humanos/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Autoantígeno Ku , Proteínas Mutantes/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Diester Fosfórico Hidrolases/isolamento & purificação , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
11.
J Ind Microbiol Biotechnol ; 33(2): 75-83, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16292556

RESUMO

The msdA gene encodes methylmalonic acid semialdehyde dehydrogenase (MSDH) and is known to be involved in valine catabolism in Streptomyces coelicolor. Using degenerative primers, a homolog of msdA gene was cloned and sequenced from the monensin producer, Streptomyces cinnamonensis. RT-PCR results showed msdA was expressed in a vegetative culture, bump-seed culture and the early stages of oil-based monensin fermentation. However, isotopic labeling of monensin A by [2, 4-(13)C(2)]butyrate revealed that this MSDH does not play a role in providing precursors such as methylmalonyl-CoA for the monensin biosynthesis under these fermentation conditions. Using a PCR-targeting method, msdA was disrupted by insertion of an apramycin resistance gene in S. cinnamonensis C730.1. Fermentation results revealed that the resulting DeltamsdA mutant (CXL1.1) produced comparable levels of monensin to that observed for C730.1. This result is consistent with the hypothesis that butyrate metabolism in S. cinnamonensis in the oil-based fermentation is not mediated by msdA, and that methylmalonyl-CoA is probably produced through direct oxidation of the pro-S methyl group of isobutyryl-CoA. The CXL1.1 mutant and C730.1 were both able to grow in minimal medium with valine or butyrate as the sole carbon source, contrasting previous observations for S. coelicolor which demonstrated msdA is required for growth on valine. In conclusion, loss of the S. cinnamonensis msdA neither affects valine catabolism in a minimal medium, nor butyrate metabolism in an oil-based medium, and its role remains an enigma.


Assuntos
Deleção de Genes , Metilmalonato-Semialdeído Desidrogenase (Acilante) , Streptomyces/enzimologia , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Butiratos/metabolismo , Fermentação , Metilmalonato-Semialdeído Desidrogenase (Acilante)/química , Metilmalonato-Semialdeído Desidrogenase (Acilante)/genética , Metilmalonato-Semialdeído Desidrogenase (Acilante)/metabolismo , Dados de Sequência Molecular , Monensin/biossíntese , Análise de Sequência de DNA , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento
12.
J Ind Microbiol Biotechnol ; 33(2): 141-50, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16187095

RESUMO

In most bacteria acetate assimilation is accomplished via the glyoxylate pathway. Isocitrate lyase (ICL) and malate synthase (MS) are two key enzymes of this pathway, which results in the net generation of one molecule of succinyl-CoA from two acetyl-CoA molecules. Genetic and biochemical data have shown that genes encoding these key enzymes are present in streptomycetes, yet there has been no clear demonstration of the importance of these genes to acetate assimilation. In fact, for Streptomyces collinus an alternative butyryl-CoA pathway has been shown to be critical for growth on acetate as a sole carbon source. Crotonyl-CoA reductase (CCR) is a key enzyme in this pathway and catalyzes the last step of the conversion of 2-acetyl-CoA molecules to butyryl-CoA. In Streptomyces cinnamonensis C730.1, it has been shown that CCR and this butyryl-CoA pathway provide the majority of methylmalonyl-CoA and ethylmalonyl-CoA for monensin A biosynthesis in an oil-based fermentation medium. We have cloned a MS homologue gene from this strain. Reverse transcription and direct enzyme assays demonstrated that neither this nor other MS genes were expressed during fermentation in an oil-based fermentation of either the C730.1 or L1 strain (a ccr mutant). Similarly, no ICL activity could be detected. The C730.1 but not the L1 strain was able to grow on acetate as a sole carbon source. The Streptomyces coelicolor aceA and aceB2 genes encoding ICL and MS were cloned into a Streptomyces expression plasmid (a derivative of pSET152) to create pExIM1. Enzyme assays and transcript analyses demonstrated expression of both of these proteins in C730.1/pExIM1 and L1/pExIM1 grown in an oil-based fermentation and tryptic soy broth media. Nonetheless, L1/pExIM1, like L1, was unable to grow on acetate as a sole carbon source, and was unable to efficiently generate precursors for monensin A biosynthesis in an oil-based fermentation, indicating that the additional presence of these two enzyme activities does not permit a functional glyoxylate cycle to occur. UV mutagenesis of S. cinnamonensis L1 and L1/pExIM1 led to mutants which were able to grow efficiently on acetate despite a block in the butyryl-CoA pathway. Analysis of enzyme activity and monensin production from these mutants in an oil-based fermentation demonstrated that neither the glyoxylate cycle nor the butyryl-CoA pathway function, suggesting the possibility of alternative pathways of acetate assimilation.


Assuntos
Acetatos/metabolismo , Proteínas de Bactérias/metabolismo , Glioxilatos/metabolismo , Streptomyces/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Meios de Cultura , Isocitrato Liase/metabolismo , Malato Sintase/genética , Malato Sintase/metabolismo , Mutação , Streptomyces/enzimologia , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento
13.
J Am Chem Soc ; 125(34): 10166-7, 2003 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-12926927

RESUMO

Thiolactomycin (TLM), a natural product produced by both Nocardia and Streptomyces spp., is a potent and highly selective inhibitor of the type II dissociated fatty acid synthases of plants and bacteria. The unique mode of action of TLM and its low toxicity make it an attractive compound for development of new antimicrobial agents. In this study, incorporation studies with 13C-labeled precursors demonstrate that TLM is derived from one acetate-derived starter unit and three methylmalonate-derived extender units. The unusual thiolactone represented by TLM represents a novel class of polyketide-derived antibiotics in which an unusual cyclization process, which terminates the biosynthetic pathway, involves incorporation of a sulfur atom from l-cysteine. Manipulation of this pathway through techniques such a combinatorial biosynthesis and mutasynthesis may provide a new route for economically viable production of useful TLM analogues.


Assuntos
Acetiltransferases/antagonistas & inibidores , Complexos Multienzimáticos/antagonistas & inibidores , Tiofenos/síntese química , Tiofenos/metabolismo , Acetiltransferases/metabolismo , Antibacterianos/biossíntese , Antibacterianos/síntese química , Inibidores Enzimáticos/síntese química , Ácido Graxo Sintase Tipo II , Fermentação , Complexos Multienzimáticos/metabolismo , Nocardia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA