Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 20(47): 475202, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19858562

RESUMO

We have fabricated an array of closely spaced quantum dashes starting from a planar array of self-assembled semiconductor quantum wires. The array is embedded in a metallic nanogap which we investigate by micro-photoluminescence as a function of a lateral electric field. We demonstrate that the net electric charge and emission energy of individual quantum dashes can be modified externally with the performance limited by the size inhomogeneity of the self-assembling process.

2.
Ultramicroscopy ; 109(2): 172-6, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19062188

RESUMO

A phenomenological method is developed to determine the composition of materials, with atomic column resolution, by analysis of integrated intensities of aberration-corrected Z-contrast scanning transmission electron microscopy images. The method is exemplified for InAs(x)P(1-x) alloys using epitaxial thin films with calibrated compositions as standards. Using this approach we have determined the composition of the two-dimensional wetting layer formed between self-assembled InAs quantum wires on InP(001) substrates.

3.
Rev Sci Instrum ; 78(2): 025106, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17578147

RESUMO

A compact minicryostat has been well adapted on the hard x-ray microprobe ID22 of the European Synchrotron Radiation Facility. For variable low-temperature investigations, its special technical design provides precise scanning microscopy and allows easy access for multiple detection modes. Based on x-ray excited optical luminescence technique on the micrometer scale, details of the equipment, its temperature calibration, and typical results are described. Data collections from InAs quantum heterostructures support the excellent thermal performance of the novel cryogenic device.

4.
Sci Rep ; 7(1): 4012, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28638150

RESUMO

Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap energy combination, which requires a 1.0-1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new structures allow for additional control of the effective bandgap through the period thickness and provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the theoretical efficiency limit.

5.
ACS Nano ; 3(6): 1513-7, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19435304

RESUMO

We present a fabrication method to produce site-controlled and regularly spaced InAs/GaAs quantum dots for applications in quantum optical information devices. The high selectivity of our epitaxial regrowth procedure can be used to allocate the quantum dots only in positions predefined by ex-situ local oxidation atomic force nanolithography. The quantum dots obtained following this fabrication process present a high optical quality which we have evaluated by microphotoluminescence and photon correlation experiments.

6.
Phys Rev Lett ; 101(6): 067405, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18764504

RESUMO

We study the metal-insulator transition in individual self-assembled quantum wires and report optical evidence of metallic liquid condensation at low temperatures. First, we observe that the temperature and power dependence of the single nanowire photoluminescence follow the evolution expected for an electron-hole liquid in one dimension. Second, we find novel spectral features that suggest that in this situation the expanding liquid condensate compresses the exciton gas in real space. Finally, we estimate the critical density and critical temperature of the phase transition diagram at n{c} approximately 1 x 10;{5} cm;{-1} and T{c} approximately 35 K, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA