Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Immunology ; 173(1): 196-208, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38887097

RESUMO

The activation of CD4+ T-cells in a T cell receptor (TCR)-dependent antigen-specific manner is a central characteristic of the adaptive immune response. In addition to ensuring that CD4+ T-cells recognise their cognate antigen during activation, TCR-mediated signalling can also direct the outcome of differentiation. In both in vivo and in vitro model systems, strong TCR signalling has been demonstrated to drive Th1 differentiation, whereas weak TCR signalling drives Th2 responses. During the process of differentiation, TCR signal strength acts as a quantitative component in combination with the qualitative effects imparted by cytokines to polarise distinct T-helper lineages. Here, we investigated the role of interleukin 2 (IL-2) signalling in determining the outcome of TCR-dependent differentiation. IL-2 production was initiated as an early response to TCR-induced activation and was regulated by the strength of TCR signalling initially received. In the absence of IL-2, TCR dependent differentiation was found to be abolished. However, proliferative responses and early markers of activation were maintained, including the upregulation of GATA3, Tbet and Foxp3 at 24 h post-stimulation. Demonstrating that IL-2 signalling has a key role in stabilising and amplifying lineage-specific transcirption factor expression during differentiation. Further, activation of IL-2-deficient T-cells in the presence of exogenous cytokines was sufficient to restore differentiation whilst maintaining transcriptional signatures imparted during initial TCR signalling. Combined, our data demonstrate that the integration of quantitative TCR-dependent signalling and qualitative IL-2 signalling is essential for determining the fate of CD4+ T-cells during differentiation.


Assuntos
Diferenciação Celular , Interleucina-2 , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Células Th1 , Células Th2 , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Células Th2/imunologia , Células Th2/metabolismo , Interleucina-2/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Camundongos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Cultivadas
2.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203514

RESUMO

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the destruction of insulin-producing pancreatic ß-cells by the immune system. Although conventional therapeutic modalities, such as insulin injection, remain a mainstay, recent years have witnessed the emergence of novel treatment approaches encompassing immunomodulatory therapies, such as stem cell and ß-cell transplantation, along with revolutionary gene-editing techniques. Notably, recent research endeavors have enabled the reshaping of the T-cell repertoire, leading to the prevention of T1D development. Furthermore, CRISPR-Cas9 technology has demonstrated remarkable potential in targeting endogenous gene activation, ushering in a promising avenue for the precise guidance of mesenchymal stem cells (MSCs) toward differentiation into insulin-producing cells. This innovative approach holds substantial promise for the treatment of T1D. In this review, we focus on studies that have developed T1D models and treatments using gene-editing systems.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Insulina Regular Humana , Insulina , Tecnologia
3.
Qatar Med J ; 2022(2): 15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909411

RESUMO

The chain of events that leads to the sensitization of the immune system to environmental antigens, resulting in the onset of allergic disease, has been studied in great detail over the past 30 years. However, during this time, the rate of allergic diseases has increased exponentially, indicating the need to concentrate our studies on host-environmental factors that contribute to the onset of disease. Monocyte-derived dendritic cells (DCs) play a key role in driving localized and systemic immune responses. In this study, we developed a platform for screening the molecular signature and phenotypic profile of DCs activated by allergenic stimuli, including TSLP, IL-25, IL-33, IL-1a, Vit-D3 (1α,25-Dihydroxyvitamin D3), PAR1-AP Peptide, Papain, and recombinant human DerP1 protein to induce a type II associated inflammatory signature. Following activation with allergenic stimuli, modulated DCs are subjected to deep phenotyping via flow cytometry for surface and intracellular markers to detect and/or validate immunomodulatory properties. RNA sequencing is further used to compare the gene expression profiles of DCs responding to either allergenic or microbial stimuli, including the TLR3 agonist dsRNA Poly I:C and TLR4 agonist LPS. In our study, we aimed to identify key molecular signatures of DCs involved in the development of asthma and allergy based on their comparative activation with this broad panel of allergens. We expect to determine central control modules of transcription factors in DCs associated with Th2 induction.

4.
Qatar Med J ; 2022(2): 17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909404

RESUMO

Allergic diseases constitute significant health and economic issues in both developed and developing nations, with epidemiological studies demonstrating a rapid increase in the global prevalence of food allergy among the pediatric population. Cow milk protein allergy (CMPA), one of the most common forms of food allergies observed in early childhood, affects between 2%-6% of infants and children under 3 years of age. CMPA can present as either an IgE-mediated atopic allergy or a non-IgE mediated allergic response. Antigen-specific T cells play a pivotal role in directing the type of inflammatory immune response that occurs as well as in the formation of immunological memory. IgE-mediated CMPA is thought to develop because of an abnormal expansion of allergen-specific type-2 helper T (Th2) cells and a corresponding deficiency in immune regulation by regulatory T cells (Tregs), thereby altering the Th2/Treg balance. The gut microbiota, established very early during childhood through host-microbe interactions, can influence the incidence of allergic diseases. In this study, we aimed to analyze both the microbiome composition and CD4+T cell differentiation patterns in pediatric patients with and without cow milk allergy to establish the association between these factors. Using 16S rRNA sequencing, we analyzed the microbiome composition in stool samples of allergic and non-allergic pediatric patients aged between 1-4 years and identified the microbial species abundant in IgE and non-IgE mediated cow milk allergies. To assess the CD4+T cell differentiation patterns, peripheral blood mononuclear cells (PBMCs) from these patients were re-stimulated with cow milk antigen, and T cell subsets were assessed using flow cytometry. Antigen-specific CD4+T cells were identified and sorted for high throughput sequencing and subsequent gene expression analysis. The CD4+T cell differentiation patterns of the total and antigen-specific T cells were analyzed and statistically compared with controls. The identification of the correlation between the CD4+T cell differentiation patterns and species-specific microbial abundance in IgE and non-IgE mediated cow milk allergies can help in determining how the gut microbiome influences the CD4+T cell immune compartment development, ultimately leading to the development of cow milk allergy in pediatric patients.

5.
Front Immunol ; 13: 822324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693821

RESUMO

Asthma is ranked among the most common chronic conditions and has become a significant public health issue due to the recent and rapid increase in its prevalence. Investigations into the underlying genetic factors predict a heritable component for its incidence, estimated between 35% and 90% of causation. Despite the application of large-scale genome-wide association studies (GWAS) and admixture mapping approaches, the proportion of variants identified accounts for less than 15% of the observed heritability of the disease. The discrepancy between the predicted heritable component of disease and the proportion of heritability mapped to the currently identified susceptibility loci has been termed the 'missing heritability problem.' Here, we examine recent studies involving both the analysis of genetically encoded features that contribute to asthma and also the role of non-encoded heritable characteristics, including epigenetic, environmental, and developmental aspects of disease. The importance of vertical maternal microbiome transfer and the influence of maternal immune factors on fetal conditioning in the inheritance of disease are also discussed. In order to highlight the broad array of biological inputs that contribute to the sum of heritable risk factors associated with allergic disease incidence that, together, contribute to the induction of a pro-atopic state. Currently, there is a need to develop in-depth models of asthma risk factors to overcome the limitations encountered in the interpretation of GWAS results in isolation, which have resulted in the missing heritability problem. Hence, multiomics analyses need to be established considering genetic, epigenetic, and functional data to create a true systems biology-based approach for analyzing the regulatory pathways that underlie the inheritance of asthma and to develop accurate risk profiles for disease.


Assuntos
Asma , Hipersensibilidade , Asma/epidemiologia , Asma/genética , Epigenômica , Estudo de Associação Genômica Ampla , Humanos , Padrões de Herança
6.
Commun Biol ; 5(1): 40, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017678

RESUMO

T cells are critically important for host defense against infections. T cell activation is specific because signal initiation requires T cell receptor (TCR) recognition of foreign antigen peptides presented by major histocompatibility complexes (pMHC) on antigen presenting cells (APCs). Recent advances reveal that the TCR acts as a mechanoreceptor, but it remains unclear how pMHC/TCR engagement generates mechanical forces that are converted to intracellular signals. Here we propose a TCR Bending Mechanosignal (TBM) model, in which local bending of the T cell membrane on the nanometer scale allows sustained contact of relatively small pMHC/TCR complexes interspersed among large surface receptors and adhesion molecules on the opposing surfaces of T cells and APCs. Localized T cell membrane bending is suggested to increase accessibility of TCR signaling domains to phosphorylation, facilitate selective recognition of agonists that form catch bonds, and reduce noise signals associated with slip bonds.


Assuntos
Fenômenos Biomecânicos/fisiologia , Membrana Celular , Mecanorreceptores , Receptores de Antígenos de Linfócitos T , Transdução de Sinais/fisiologia , Células Apresentadoras de Antígenos/química , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/metabolismo , Humanos , Ativação Linfocitária/fisiologia , Mecanorreceptores/química , Mecanorreceptores/metabolismo , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/química , Linfócitos T/citologia , Linfócitos T/metabolismo
7.
Front Immunol ; 9: 713, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686683

RESUMO

How T cell receptors (TCRs) are triggered to start signaling is still not fully understood. It has been proposed that segregation of the large membrane tyrosine phosphatase CD45 from engaged TCRs initiates signaling by favoring phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) in the cytoplasmic domains of CD3 molecules. However, whether CD45 segregation is important to initiate triggering is still uncertain. We examined CD45 segregation from TCRs engaged to anti-CD3 scFv with high or low affinity and with defined molecular lengths on glass-supported lipid bilayers using total internal reflection microscopy. Both short and elongated high-affinity anti-CD3 scFv effectively induced similar calcium mobilization, Zap70 phosphorylation, and cytokine secretion in Jurkat T cells but CD45 segregated from activated TCR microclusters significantly less for elongated versus short anti-CD3 ligands. In addition, at early times, triggering cells with both high and low affinity elongated anti-CD3 scFv resulted in similar degrees of CD3 co-localization with CD45, but only the high-affinity scFv induced T cell activation. The lack of correlation between CD45 segregation and early markers of T cell activation suggests that segregation of CD45 from engaged TCRs is not mandatory for initial triggering of TCR signaling by elongated high-affinity ligands.


Assuntos
Antígenos Comuns de Leucócito/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Complexo CD3/antagonistas & inibidores , Cálcio/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Ligantes , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ativação Linfocitária/imunologia , Fosforilação , Ligação Proteica , Anticorpos de Cadeia Única/farmacologia , Proteína-Tirosina Quinase ZAP-70/metabolismo
8.
Front Immunol ; 8: 793, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740495

RESUMO

T lymphocytes are important mediators of adoptive immunity but the mechanism of T cell receptor (TCR) triggering remains uncertain. The interspatial distance between engaged T cells and antigen-presenting cells (APCs) is believed to be important for topological rearrangement of membrane tyrosine phosphatases and initiation of TCR signaling. We investigated the relationship between ligand topology and affinity by generating a series of artificial APCs that express membrane-tethered anti-CD3 scFv with different affinities (OKT3, BC3, and 2C11) in addition to recombinant class I and II pMHC molecules. The dimensions of membrane-tethered anti-CD3 and pMHC molecules were progressively increased by insertion of different extracellular domains. In agreement with previous studies, elongation of pMHC molecules or low-affinity anti-CD3 scFv caused progressive loss of T cell activation. However, elongation of high-affinity ligands (BC3 and OKT3 scFv) did not abolish TCR phosphorylation and T cell activation. Mutation of key amino acids in OKT3 to reduce binding affinity to CD3 resulted in restoration of topological dependence on T cell activation. Our results show that high-affinity TCR ligands can effectively induce TCR triggering even at large interspatial distances between T cells and APCs.

9.
Hybridoma (Larchmt) ; 27(6): 431-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18803505

RESUMO

Cystic echinococcosis (CE), an endemic cosmopolitan zoonotic helminthic disease caused by the larval stage of Echinococcus granulosus, lacks reliable diagnostic tools that fulfill the criteria of high sensitivity and specificity. Antigen B (AgB), a thermostable lipoprotein that constitutes a considerable fraction of the cystic hydatid fluid (HF), is being considered as a suitable source for vaccination and immunodiagnosis of CE due to its high specificity. Genetic immunization was used to immunize BALB/c mice with the second subunit of antigen B (EgAgB8/2) for the production of monoclonal antibodies (MAb). Fusion products between the spleen cells and myeloma cells produced six MAbs of the following isotypes: IgG2a (two clones), IgG2b (three clones), and IgM (one clone). The MAbs were tested for their specificity to crude sheep hydatid fluid (CSHF) versus other antigens prepared from other helminthic parasites including Toxocara canis, Acanthocheilonema viteae, Fasciola hepatica, Schistosoma mansoni, and Taenia. Five MAbs reacted with E. granulosus antigens, one showed cross reactivity with S. mansonia antigens, and one showed a high reactivity with E. granulosus but was cross reactive with all helminthic antigens tested. Using SDS-PAGE and immunoblotting under reducing conditions, all MAbs identified the four AgB subunits with molecular weights of 8, 16, 24, and 36 kDa. Further work on the specificity and sensitivity of these MAbs as well as their use in detecting circulating parasite antigens and in antigen purification will be assessed in future studies.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Anticorpos Monoclonais/química , Antígenos de Helmintos/imunologia , DNA/química , Echinococcus/metabolismo , Hibridomas/metabolismo , Lipoproteínas/química , Animais , Sequência de Bases , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Ovinos , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA