Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Archaea ; 2020: 8844811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33223963

RESUMO

Chitinases or chitinolytic enzymes have different applications in the field of medicine, agriculture, and industry. The present study is aimed at developing an effective hyperchitinase-producing mutant strain of novel Bacillus licheniformis. A simple and rapid methodology was used for screening potential chitinolytic microbiota by chemical mutagenesis with ethylmethane sulfonate and irradiation with UV. There were 16 mutant strains exhibiting chitinase activity. Out of the chitinase-producing strains, the strain with maximum chitinase activity was selected, the protein was partially purified by SDS-PAGE, and the strain was identified as Bacillus licheniformis (SSCL-10) with the highest specific activity of 3.4 U/mL. The induced mutation model has been successfully implemented in the mutant EMS-13 (20.2 U/mL) that produces 5-6-fold higher yield of chitinase, whereas the mutant UV-11 (13.3 U/mL) has 3-4-fold greater chitinase activity compared to the wild strain. The partially purified chitinase has a molecular weight of 66 kDa. The wild strain (SSCL-10) was identified as Bacillus licheniformis using 16S rRNA sequence analysis. This study explores the potential applications of hyperchitinase-producing bacteria in recycling and processing chitin wastes from crustaceans and shrimp, thereby adding value to the crustacean industry.


Assuntos
Bacillus licheniformis/isolamento & purificação , Bacillus licheniformis/metabolismo , Quitina/metabolismo , Quitinases/metabolismo , Animais , Artemia/microbiologia , Bacillus licheniformis/genética , Quitina/genética , Quitinases/genética , Crustáceos/microbiologia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Alimentos Marinhos/microbiologia
2.
Ann Hum Biol ; 46(6): 509-513, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31571496

RESUMO

Background: Short tandem repeats (STRs) are genetic markers that are more informative than single nucleotide polymorphisms and they are widely used in forensic DNA analysis.Aim: To carry out the genetic analysis of 20 autosomal STR loci in Han individuals of Putian City, Southeast China, to expand the available population information for human genetic databases and forensic analysis.Subjects and methods: Saliva swabs from 1417 unrelated Chinese Han individuals from Putian City of Southeast China were collected and then genotyped using the SureID® 21G Human STR Identification Kit. Moreover, phylogenetic analysis based on the Nei's standard genetic distance was performed between the Han population and other relevant populations based on the shared autosomal STR genotyping.Results: We found 272 alleles among 1417 unrelated individuals and the corresponding allelic frequencies ranged from 0.5409 to 0.0004. The combined power of exclusion (CPE) was 0.999999995514, and the combined power of discrimination (CPD) was 0.9999999999999999999999994061. Population comparison revealed that the Putian Han population makes a cluster with other Han populations from China while showing significant differences when compared with other worldwide populations.Conclusions: Our results found that the SureID® 21G Human STR Identification Kit panel was appropriate for forensic identity testing and paternity testing. Putian Han population had a closer genetic relationship with Han populations from other regions in China, while other minorities like Uighurs and Kazakhs from China showed significant differences.


Assuntos
Loci Gênicos , Repetições de Microssatélites , Filogenia , Polimorfismo Genético , China , Cidades , Genética Populacional , Humanos
3.
Adv Exp Med Biol ; 874: 183-99, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26589219

RESUMO

Patients in hospital intensive care units have long been recognized as being at high risk for developing infections from bacteria, fungi, and viruses from within the hospital locality. Risk factors for development of nosocomial infections have usually focussed on the patient's physical condition and the number and type of invasive medical procedures administered. Using the staphylococci as its focus, this chapter presents recent evidence that some of the medications routinely used in the treatment of acutely ill patients may also be a risk factor for the development of nosocomial infections.


Assuntos
Catecolaminas/farmacologia , Infecção Hospitalar/etiologia , Staphylococcus/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Biofilmes , Humanos , Unidades de Terapia Intensiva , Fatores de Risco , Staphylococcus/fisiologia
4.
Front Pharmacol ; 14: 1155163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201024

RESUMO

Background: Guggulsterone (pregna-4,17-diene-3,16-dione; C21H28O2) is an effective phytosterol isolated from the gum resin of the tree Commiphora wightii (Family Burseraceae) and is responsible for many of the properties of guggul. This plant is widely used as traditional medicine in Ayurveda and Unani system of medicine. It exhibits several pharmacological activities, such as anti-inflammatory, analgesic, antibacterial, anti-septic and anticancer. In this article, the activities of Guggulsterone against cancerous cells were determined and summarized. Methods: Using 7 databases (PubMed, PMC, Google Scholar, Science Direct, Scopus, Cochrane and Ctri.gov), the literature search was conducted since conception until June 2021. Extensive literature search yielded 55,280 studies from all the databases. A total of 40 articles were included in the systematic review and of them, 23 articles were included in the meta-analysis.The cancerous cell lines used in the studies were for pancreatic cancer, hepatocellular carcinoma, head and neck squamous cell carcinoma, cholangiocarcinoma, oesophageal adenocarcinoma, prostrate cancer, colon cancer, breast cancer, gut derived adenocarcinoma, gastric cancer, colorectal cancer, bladder cancer, glioblastoma, histiocytic leukemia, acute myeloid leukemia and non-small cell lung cancer. The reliability of the selected studies was assessed using ToxRTool. Results: Based on this review, guggulsterone significantly affected pancreatic cancer (MiaPaCa-2, Panc-1, PC-Sw, CD18/HPAF, Capan1, PC-3), hepatocellular carcinoma (Hep3B, HepG2, PLC/PRF/5R), head and neck squamous cell carcinoma (SCC4, UM-22b, 1483), cholangiocarcinoma (HuCC-T1, RBE, Sk-ChA-1, Mz-ChA-1) and oesophageal adenocarcinoma (CP-18821, OE19), prostrate cancer (PC-3), colon cancer (HT-29), breast cancer (MCF7/DOX), gut derived adenocarcinoma (Bic-1), gastric cancer (SGC-7901), colorectal cancer (HCT116), bladder cancer (T24, TSGH8301), glioblastoma (A172, U87MG, T98G), histiocytic leukemia (U937), acute myeloid leukemia (HL60, U937) and non-small cell lung cancer (A549, H1975) by inducing apoptotic pathways, inhibiting cell proliferation, and regulating the expression of genes involved in apoptosis. Guggulsterone is known to have therapeutic and preventive effects on various categories of cancers. It can inhibit the progression of tumors and can even reduce their size by inducing apoptosis, exerting anti-angiogenic effects, and modulating various signaling cascades. In vitro studies reveal that Guggulsterone inhibits and suppresses the proliferation of an extensive range of cancer cells by decreasing intrinsic mitochondrial apoptosis, regulating NF-kB/STAT3/ß-Catenin/PI3K/Akt/CHOP pathway, modulating the expression of associated genes/proteins, and inhibiting angiogenesis. Furthermore, Guggulsterone reduces the production of inflammatory markers, such as CDX2 and COX-2. The other mechanism of the Guggulsterone activity is the reversal of P-glycoprotein-mediated multidrug resistance. Twenty three studies were selected for meta-analysis following the PRISMA statements. Fixed effect model was used for reporting the odds ratio. The primary endpoint was percentage apoptosis. 11 of 23 studies reported the apoptotic effect at t = 24 h and pooled odds ratio was 3.984 (CI 3.263 to 4.865, p < 0.001). 12 studies used Guggulsterone for t > 24 h and the odds ratio was 11.171 (CI 9.148 to 13.643, 95% CI, p < 0.001). The sub-group analysis based on cancer type, Guggulsterone dose, and treatment effects. Significant alterations in the level of apoptotic markers were reported by Guggulsterone treatment. Conclusion: This study suggested that Guggulsterone has apoptotic effects against various cancer types. Further investigation of its pharmacological activity and mechanism of action should be conducted. In vivo experiments and clinical trials are required to confirm the anticancer activity.

5.
Front Nutr ; 10: 1126579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545572

RESUMO

Ulcerative colitis (UC) is presently considered a multifactorial pathology, which may lead to persistent inflammatory action of the gastrointestinal tract (GIT) because of an improperly managed immunological reactivity to the intestinal microbiota found in the GIT. The immune response to common commensal microbes plays an essential role in intestinal inflammation related to UC synbiotics, and it is an important element in the optimal therapy of UC. Therefore, synbiotics, i.e., a mixture of prebiotics and probiotics, may help control the diseased state. Synbiotics alleviate the inflammation of the colon by lowering the reactive oxygen species (ROS) and improving the level of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD). Prebiotic supplementation is not a common practice at the moment, despite numerous research findings proving that the benefits of both probiotics and prebiotics encourage their continued existence and positioning in the GIT, with positive effects on human health by managing the inflammatory response. However, the fact that there have been fewer studies on the treatment of UC with different probiotics coupled with selected prebiotics, i.e., synbiotics, and the outcomes of these studies have been very favorable. This evidence-based study explores the possible role of ROS, SOD, and synbiotics in managing the UC. The proposed review also focuses on the role of alteration of gut microbiota, antioxidant defense in the gastrointestinal tract, and the management of UC. Thus, the current article emphasizes oxidative stress signaling in the GI tract, oxidative stress-based pathomechanisms in UC patients, and UC therapies inhibiting oxidative stress' effects.

6.
Toxicol In Vitro ; 83: 105417, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35718257

RESUMO

Cancer stem cells (CSCs) are self-renewing multipotent cells that play a vital role in the development of cancer drug resistance conditions. Various therapies like conventional, targeted, and radiotherapies have been broadly used in targeting and killing these CSCs. Among these, targeted therapy selectively targets CSCs and leads to overcoming disease recurrence conditions in cancer patients. Immunotoxins (ITs) are protein-based therapeutics with selective targeting capabilities. These chimeric molecules are composed of two functional moieties, i.e., a targeting moiety for cell surface binding and a toxin moiety that induces the programmed cell death upon internalization. Several ITs have been constructed recently, and their preclinical and clinical efficacies have been evaluated. In this review, we comprehensively discussed the recent preclinical and clinical advances as well as significant challenges in ITs targeting CSCs, which might reduce the burden of drug resistance conditions in cancer patients from bench to bedside.


Assuntos
Imunotoxinas , Neoplasias , Apoptose , Resistencia a Medicamentos Antineoplásicos , Humanos , Imunotoxinas/metabolismo , Imunotoxinas/farmacologia , Imunotoxinas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células-Tronco Neoplásicas
7.
Pak J Biol Sci ; 24(10): 1034-1039, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34842372

RESUMO

<b>Background and Objective:</b> Green chemistry approach is a simple, eco-friendly, less toxic, cost-effective and biological method. <i>Phoenix dactylifera </i>seed extract has been used as a reducing and capping agent for the green synthesis of copper oxide nanomaterials. This approach had forewarned the interest in researching natural waste products to increase the usage of alternative therapies for infectious diseases. The present investigation determined the production of biogenic copper oxide nanomaterials using the seeds of date fruits (<i>Phoenix dactylifera </i>L.) by green approaches and an eco-friendly process. <b>Materials and Methods:</b> Extract of seeds of date fruits acted as potential and effective bio capping and reductant agents for bio-synthesis of copper oxide nanoparticles. The properties of biogenic copper oxide nanomaterials were assessed and characterized by the FT-IR, SEM, EDX, XRD and TGA analysis. <b>Results:</b> All the characterization results were confirming that produced copper oxide nanomaterials are spherical in shape with a size of 30±6 nm. Synthesized copper oxide nanomaterials are highly pure forms and resistant to high temperatures. Further, the antibacterial activity of green synthesized copper oxide nanomaterials against human bacterial pathogens was evaluated by the agar well diffusion method. The maximum zone of inhibition was obtained in <i>E. coli</i> as compared to the positive control (tetracycline). <b>Conclusion:</b> The results of the antibacterial assay indicate that biogenic copper oxide nanomaterials should be considered as an antibacterial agent for the treatment and prevention of infectious diseases.


Assuntos
Cobre/farmacologia , Phoeniceae/química , Sementes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cobre/uso terapêutico , Testes de Sensibilidade Microbiana/métodos , Nanoestruturas/uso terapêutico
8.
Antioxidants (Basel) ; 10(9)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34573051

RESUMO

Reactive oxygen species (ROS) are noxious to cells because their increased level interacts with the body's defense mechanism. These species also cause mutations and uncontrolled cell division, resulting in oxidative stress (OS). Prolonged oxidative stress is responsible for incorrect protein folding in the endoplasmic reticulum (ER), causing a stressful condition, ER stress. These cellular stresses (oxidative stress and ER stress) are well-recognized biological factors that play a prominent role in the progression of hepatocellular carcinoma (HCC). HCC is a critical global health problem and the third leading cause of cancer-related mortality. The application of anti-oxidants from herbal sources significantly reduces oxidative stress. Kaempferol (KP) is a naturally occurring, aglycone dietary flavonoid that is present in various plants (Crocus sativus, Coccinia grandis, Euphorbia pekinensis, varieties of Aloe vera, etc.) It is capable of interacting with pleiotropic proteins of the human body. Efforts are in progress to develop KP as a potential candidate to prevent HCC with no adverse effects. This review emphasizes the molecular mechanism of KP for treating HCC, targeting oxidative stress.

9.
Saudi J Biol Sci ; 28(4): 2180-2187, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33911934

RESUMO

A broad spectrum of medicinal plants was used as traditional remedies for various infectious diseases. Fungal infectious diseases have a significant impact on public health. Fungi cause more prevalent infections in immunocompromised individuals mainly patients undergoing transplantation related therapies, and malignant cancer treatments. The present study aimed to investigate the in vitro antifungal effects of the traditional medicinal plants used in India against the fungal pathogens associated with dermal infections. Indian medicinal plants (Acalypha indica, Lawsonia inermis Allium sativum and Citrus limon) extract (acetone/crude) were tested for their antifungal effects against five fungal species isolated from skin scrapings of fungal infected patients were identified as including Alternaria spp., Curvularia spp., Fusarium spp., Trichophyton spp. and Geotrichum spp. using well diffusion test and the broth micro dilution method. All plant extracts have shown to have antifungal efficacy against dermal pathogens. Particularly, Allium sativum extract revealed a strong antifungal effect against all fungal isolates with the minimum fungicidal concentration (MFC) of 50-100 µg/mL. Strong antifungal activity against Curvularia spp., Trichophyton spp., and Geotrichum spp. was also observed for the extracts of Acalypha indica, and Lawsonia inermis with MFCs of 50-800 µg/mL respectively. The extracts of Citrus limon showed an effective antifungal activity against most of the fungal strains tested with the MFCs of 50-800 µg/mL. Our research demonstrated the strong evidence of conventional plants extracts against clinical fungal pathogens with the most promising option of employing natural-drugs for the treatment of skin infections. Furthermore, in-depth analysis of identifying the compounds responsible for the antifungal activity that could offer alternatives way to develop new natural antifungal therapeutics for combating resistant recurrent infections.

10.
Anal Cell Pathol (Amst) ; 2020: 6692739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33457195

RESUMO

The impact of the SARS-CoV-2 pandemic has significantly affected global health and created a world crisis. The exponentially increasing numbers of infection and mortality have made preventive measures challenging. India being a highly populated nation has so far effectively counteracted the pandemic outbreak with a significantly lower rate of mortality despite the high infection rates. The genetic architecture of the immune response genes in the Indian population, BCG vaccination, the predominantly young age group of people, and their traditional food habits might contribute to the lower rate of mortality. Human leukocyte antigens (HLA) play a vital role in triggering T cells, and natural killer (NK) cells can immediately react to eliminate infected cells. Activation of virus-specific CD4+ T cells and CD8+ cytotoxic T cells selectively targets the infected cells and strengthens the immunoregulatory system. The checkpoint for NK cell function is the engagement of killer Ig-like receptors (KIR) molecules with their respective HLA ligands overexpressed or expressed on the compromised virus-infected cells which have shown polymorphism among different ethnic groups. Here, we explore if certain KIR-HLA motifs grant Indians a survival advantage in terms of the low rate of mortality. Additionally, enhanced immunity through BCG vaccination may favor fruitful eradication of SARS-CoV-2 and provide the way out as in therapeutic intervention and vaccination strategies.


Assuntos
COVID-19/imunologia , Pandemias , SARS-CoV-2 , Vacina BCG/farmacologia , COVID-19/epidemiologia , COVID-19/mortalidade , Reações Cruzadas , Síndrome da Liberação de Citocina/imunologia , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Índia/epidemiologia , Células Matadoras Naturais/imunologia , Modelos Imunológicos , Pandemias/prevenção & controle , Receptores KIR/genética , Receptores KIR/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia
11.
Saudi J Biol Sci ; 27(12): 3581-3592, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304169

RESUMO

Mitochondria are a major intracellular organelle for drug targeting due to its functional roles in cellular metabolism and cell signaling for proliferation and cell death. Mitochondria-targeted treatment strategy could be promising to improve the therapeutic efficacy of cancer while minimizing the adverse side effects. Over the last decades, several studies have explored and focused on mitochondrial functions, which has led to the emergence of mitochondria-specific therapies. Molecules in the mitochondria are considered to be prime targets, and a wide range of molecular strategies have been designed for targeting mitochondria compared with that of the cytosol. In this review, we focused on the molecular mechanisms of mitochondria-specific ligand targeting and selective drug action strategies for targeting mitochondria, including those premised on mitochondrial targeting of signal peptides (MTS), cell-penetrating peptides (CPPs), and use of lipophilic cations. Furthermore, most research has concentrated on specific conjugation of ligands to therapeutic molecules to enhance their effectiveness. There are several variations for the ideal design and development for mitochondrial-targeted drugs, such as selecting a suitable ligand and linker targets. However, some challenges related to drug solubility and selectivity could be resolved using the nanocarrier system. Nanoparticles yield excellent advantages for targeting and transmitting therapeutic drugs, and they offer elegant platforms for mitochondria-specific drug delivery. We explain many of the advanced and proven strategies for multifunctional mitochondria-specific targets, which should contribute to achieving better anticancer therapies in a promising future.

12.
Perit Dial Int ; 39(4): 362-374, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31123076

RESUMO

Background:Infectious peritonitis is a clinically important condition contributing to the significant mortality and morbidity rates observed in peritoneal dialysis (PD) patients. Although some of the socioeconomic risk factors for PD-associated peritonitis have been identified, it is still unclear why certain patients are more susceptible than others to infection.Methods:We examined the molecular components of human peritoneal dialysate (HPD) in an attempt to identify factors that might increase patient susceptibility to infection. Characterization studies were performed on initial and follow-up dialysate samples collected from 9 renal failure patients on PD.Results:Our in vitro data showed that peritonitis-causing bacteria grew differently in the patient dialysates. Proteomic analysis identified an association between transferrin presence and infection risk, as peritoneal transferrin was discovered to be iron-saturated, which was in marked contrast to transferrin in blood. Further, use of radioactive iron-labeled transferrin showed peritoneal transferrin could act as a direct iron source for the growth of peritonitis-causing bacteria. We also found catecholamine stress hormones noradrenaline and adrenaline were present in the dialysates and were apparently involved in enhancing the growth of the bacteria via transferrin iron provision. This suggests the iron biology status of the PD patient may be a risk factor for development of infectious peritonitisConclusions:Collectively, our study suggests transferrin and catecholamines within peritoneal dialysate may be indicators of the potential for bacterial growth in HPD and, as infection risk factors, represent possible future targets for therapeutic manipulation.


Assuntos
Ferro/metabolismo , Falência Renal Crônica/metabolismo , Falência Renal Crônica/terapia , Diálise Peritoneal/efeitos adversos , Peritonite/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Soluções para Diálise , Feminino , Humanos , Falência Renal Crônica/complicações , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA