Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Endocr Pract ; 26(1): 72-81, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31557081

RESUMO

Objective: Vitamin D-dependent rickets type 2A (VDDR2A) is a rare autosomal recessive disorder caused by mutations in the vitamin D receptor gene (VDR), leading to end-organ resistance to 1,25-dihydroxyvitamin D3 (1,25[OH]2D3). The objective of this study was to investigate VDR mutations in 11 patients from 8 Turkish-Arab families. Methods: All coding exons and intron-exon boundaries of the VDR gene were amplified by polymerase chain reaction from peripheral leukocyte DNA and sequenced. The effect of splice-site mutations on mRNA splicing was evaluated by a customized VDR mini-gene assay. Results: Homozygous VDR mutations were found in all the patients, including four novel mutations: c.473G>T (p.R158L), c.1-4A>G (IVS3-2A>G), c.755+1G>T, and c.352_356delGACAG (p.D118Sfs*7). The c.1-4A>G mutation was located in the canonical splice acceptor site and 4 base pairs from the original ATG start codon. The mutation resulted in both complete (60% of transcripts) and partial exon 4 skipping (15% of transcripts). The latter was due to activation of a cryptic splice acceptor site and did not disrupt the open reading frame. Both c.755+1G>T and c.352_356delGACAG resulted in frameshifts and a premature stop codon. Clinically, all the patients required continued treatment, except for patient IV-3, who presented with alopecia, hypocalcemia, and increased 1,25(OH)2D3 at 1.5 years of age as a result of the c.1-4A>G mutation. He stopped taking medication at 6 years of age and still maintained normal height and biochemical profile. Conclusion: We have identified four novel VDR mutations. Although canonical splice-site mutations cause premRNA splicing errors that usually lead to a severe disease phenotype, mild disease can also occur due to activation of a cryptic splice site. Abbreviations: 1,25(OH)2D3 = 1,25-dihydroxyvitamin D3 (calcitriol); 25OHD3 = 25-hydroxyvitamin D3; PCR = polymerase chain reaction; PTH = parathyroid hormone; VDDR2A = vitamin D-dependent rickets type 2A; VDR = vitamin D receptor.


Assuntos
Raquitismo Hipofosfatêmico Familiar/genética , Receptores de Calcitriol/genética , Raquitismo , Criança , Humanos , Lactente , Masculino , Mutação , Fenótipo , Vitamina D
2.
J Clin Endocrinol Metab ; 107(3): e1263-e1276, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34632506

RESUMO

CONTEXT: Congenital hypothyroidism (CH) is caused by mutations in the genes for thyroid hormone synthesis. In our previous investigation of CH patients, approximately 53% of patients had mutations in either coding exons or canonical splice sites of causative genes. Noncanonical splice-site variants in the intron were detected but their pathogenic significance was not known. OBJECTIVE: This work aims to evaluate noncanonical splice-site variants on pre-messenger RNA (pre-mRNA) splicing of CH-causing genes. METHODS: Next-generation sequencing data of 55 CH cases in 47 families were analyzed to identify rare intron variants. The effects of variants on pre-mRNA splicing were investigated by minigene RNA-splicing assay. RESULTS: Four intron variants were found in 3 patients: solute carrier family 26 member 4 (SLC26A4) c.1544+9C>T and c.1707+94C>T in one patient, and solute carrier family 5 member 5 (SLC5A5) c.970-48G>C and c.1652-97A>C in 2 other patients. The c.1707+94C>T and c.970-48G>C caused exons 15 and 16 skipping, and exon 8 skipping, respectively. The remaining variants had no effect on RNA splicing. Furthermore, we analyzed 28 previously reported noncanonical splice-site variants (4 in TG and 24 in SLC26A4). Among them, 15 variants (~ 54%) resulted in aberrant splicing and 13 variants had no effect on RNA splicing. These data were compared with 3 variant-prediction programs (FATHMM-XF, FATHMM-MKL, and CADD). Among 32 variants, FATHMM-XF, FATHMM-MKL, and CADD correctly predicted 20 (63%), 17 (53%), and 26 (81%) variants, respectively. CONCLUSION: Two novel deep intron mutations have been identified in SLC26A4 and SLC5A5, bringing the total number of solved families with disease-causing mutations to approximately 45% in our cohort. Approximately 46% (13/28) of reported noncanonical splice-site mutations do not disrupt pre-mRNA splicing. CADD provides highest prediction accuracy of noncanonical splice-site variants.


Assuntos
Hipotireoidismo Congênito/genética , Sítios de Splice de RNA/genética , Splicing de RNA , Feminino , Humanos , Masculino , Mutação , Transportadores de Sulfato/genética , Simportadores/genética
3.
J Clin Endocrinol Metab ; 105(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821448

RESUMO

CONTEXT: Hypophosphatemic rickets (HR) is a group of rare hereditary renal phosphate wasting disorders caused by mutations in PHEX, FGF23, DMP1, ENPP1, CLCN5, SLC9A3R1, SLC34A1, or SLC34A3. OBJECTIVE: A large kindred with 5 HR patients was recruited with dominant inheritance. The study was undertaken to investigate underlying genetic defects in HR patients. DESIGN: Patients and their family members were initially analyzed for PHEX and FGF23 mutations using polymerase chain reaction sequencing and copy number analysis. Exome sequencing was subsequently performed to identify novel candidate genes. RESULTS: PHEX and FGF23 mutations were not detected in the patients. No copy number variation was observed in the genome using CytoScan HD array analysis. Mutations in DMP1, ENPP1, CLCN5, SLC9A3R1, SLC34A1, or SLC34A3 were also not found by exome sequencing. A novel c.979-96 T>A mutation in the SGK3 gene was found to be strictly segregated in a heterozygous pattern in patients and was not present in normal family members. The mutation is located 1 bp downstream of a highly conserved adenosine branch point, resulted in exon 13 skipping and in-frame deletion of 29 amino acids, which is part of the protein kinase domain and contains a Thr-320 phosphorylation site that is required for its activation. Protein tertiary structure modelling showed significant structural change in the protein kinase domain following the deletion. CONCLUSIONS: The c.979-96 T>A splice mutation in the SGK3 gene causes exon 13 skipping and deletion of 29 amino acids in the protein kinase domain. The SGK3 mutation may cause autosomal dominant HR.


Assuntos
Raquitismo Hipofosfatêmico Familiar/etiologia , Mutação , Fosfatos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Raquitismo/etiologia , Adulto , Biomarcadores/análise , Criança , Pré-Escolar , Análise Mutacional de DNA , Raquitismo Hipofosfatêmico Familiar/metabolismo , Raquitismo Hipofosfatêmico Familiar/patologia , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Pessoa de Meia-Idade , Linhagem , Prognóstico , Raquitismo/metabolismo , Raquitismo/patologia
4.
Bone ; 125: 186-193, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31102713

RESUMO

CONTEXT: X-linked hypophosphatemic rickets (XLH) is caused by inactivating mutations in the PHEX gene and is the most common form of hereditary rickets. The splice-site mutations account for 17% of all reported PHEX mutations. The functional consequence of these splice-site mutations has not been systemically investigated. OBJECTIVE: The current study was undertaken to functionally annotate previously reported 22 splice-site mutations in the PHEX gene. METHODS: PHEX mini-genes with different splice-site mutations were created by site-directed mutagenesis and expressed in HEK293 cells. The mRNA transcripts were analyzed by RT-PCR, cloning, and sequencing. RESULTS: These splicing mutations led to a variety of consequences, including exon skipping, intron retention, and activation of cryptic splice sites. Among 22 splice-site mutations, exon skipping was the most common event accounting for 73% (16/22). Non-canonical splice-site mutations could result in splicing errors to the same extent as canonical splice-site mutations such as c.436+3G>C, c.436+4A>C, c.436+6T>C, c.437-3C>G, c.850-3C>G, c.1080-3C>A, c.1482+5G>C, c.1586+6T>C, c.1645+5G>A, c.1645+6T>C, c.1701-16T>A, c.1768+5G>A, and c.1899+5G>A. Interestingly, non-canonical (c.436+6T>C and c.1586+6T>C) and canonical splice-site mutations (c.1769-1G>C) could generate partial splicing errors (both wild-type and mutant transcripts were detected), resulting in incomplete inactivation of PHEX gene, which may explain the mild disease phenotype reported previously, providing evidence of genotype-phenotype correlation. c.1645C>T (p.R549*) had no impact on pre-mRNA splicing although it is located next to canonical splice donor site GT. CONCLUSIONS: Exon skipping is the most common outcome due to splice-site mutations. Both canonical and non-canonical splice-site mutations can result in either severe or mild RNA splicing defects, contributing to phenotype heterogeneity. Non-canonical splice-site mutations should not be overlooked in genetic screening especially those located within 50 bp from canonical splice site.


Assuntos
Raquitismo Hipofosfatêmico Familiar/genética , Mutação/genética , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Éxons/genética , Proteínas da Matriz Extracelular/genética , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Células HEK293 , Humanos , Íntrons/genética , Fosfoproteínas/genética , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
PLoS One ; 13(3): e0193388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29505567

RESUMO

BACKGROUND: Hereditary hypophosphatemia is a group of rare renal phosphate wasting disorders. The diagnosis is based on clinical, radiological, and biochemical features, and may require genetic testing to be confirmed. METHODOLOGY: Clinical features and mutation spectrum were investigated in patients with hereditary hypophosphatemia. Genomic DNA of 23 patients from 15 unrelated families were screened sequentially by PCR-sequencing analysis for mutations in the following genes: PHEX, FGF23, DMP1, ENPP1, CLCN5, SLC34A3 and SLC34A1. CytoScan HD Array was used to identify large deletions. RESULTS: Genetic evaluation resulted in the identification of an additional asymptomatic but intermittent hypophosphatemic subject. Mutations were detected in 21 patients and an asymptomatic sibling from 13 families (86.6%, 13/15). PHEX mutations were identified in 20 patients from 12 families. Six of them were novel mutations present in 9 patients: c.983_987dupCTACC, c.1586+2T>G, c.1206delA, c.436+1G>T, c.1217G>T, and g.22,215,887-22,395,767del (179880 bp deletion including exon 16-22 and ZNF645). Six previously reported mutations were found in 11 patients. Among 12 different PHEX mutations, 6 were de novo mutations. Patients with de novo PHEX mutations often had delayed diagnosis and significantly shorter in height than those who had inherited PHEX mutations. Novel compound heterozygous mutations in SLC34A3 were found in one patient and his asymptomatic sister: c.1335+2T>A and c.1639_1652del14. No mutation was detected in two families. CONCLUSIONS: This is the largest familial study on Turkish patients with hereditary hypophosphatemia. PHEX mutations, including various novel and de novo variants, are the most common genetic defect. More attention should be paid to hypophosphatemia by clinicians since some cases remain undiagnosed both during childhood and adulthood.


Assuntos
Raquitismo Hipofosfatêmico Familiar/genética , Mutação , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Linhagem , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Adulto , Sequência de Bases , Criança , Pré-Escolar , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Masculino , Pessoa de Meia-Idade
6.
J Clin Endocrinol Metab ; 103(5): 1889-1898, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29546359

RESUMO

Context: Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder, affecting one in 3000 to 4000 newborns. Since the introduction of a newborn screening program in 1988, more than 300 cases have been identified. The underlying genetic defects have not been systematically studied. Objective: To identify the mutation spectrum of CH-causing genes. Methods: Fifty-five patients from 47 families were studied by next-generation exome sequencing. Results: Mutations were identified in 52.7% of patients (29 of 55) in the following 11 genes: TG, TPO, DUOX2, SLC26A4, SLC26A7, TSHB, TSHR, NKX2-1, PAX8, CDCA8, and HOXB3. Among 30 patients with thyroid dyshormonogenesis, biallelic TG mutations were found in 12 patients (40%), followed by biallelic mutations in TPO (6.7%), SLC26A7 (6.7%), and DUOX2 (3.3%). Monoallelic SLC26A4 mutations were found in two patients, one of them coexisting with two tandem biallelic deletions in SLC26A7. In 25 patients with thyroid dysgenesis, biallelic mutations in TSHR were found in six patients (24%). Biallelic mutations in TSHB, PAX 8, NKX2-1, or HOXB3 were found once in four different patients. A monoallelic CDCA8 mutation was found in one patient. Most mutations were novel, including three TG, two TSHR, and one each in DUOX2, TPO, SLC26A7, TSHB, NKX2-1, PAX8, CDCA8, and HOXB3. SLC26A7 and HOXB3 were novel genes associated with thyroid dyshormonogenesis and dysgenesis, respectively. Conclusions: TG and TSHR mutations are the most common genetic defects in Saudi patients with CH. The prevalence of other disease-causing mutations is low, reflecting the consanguineous nature of the population. SLC26A7 mutations appear to be associated with thyroid dyshormonogenesis.


Assuntos
Antiporters/genética , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Técnicas de Diagnóstico Molecular , Mutação , Transportadores de Sulfato/genética , Adolescente , Criança , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Família , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Técnicas de Diagnóstico Molecular/métodos , Triagem Neonatal/métodos , Linhagem , Arábia Saudita , Disgenesia da Tireoide/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA