Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(1): 391-404, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38095213

RESUMO

The efficacy of neural electrode stimulation and recording hinges significantly on the choice of a neural electrode interface material. Transition metal carbides (TMCs), particularly titanium carbide (TiC), have demonstrated exceptional chemical stability and high electrical conductivity. Yet, the fabrication of TiC thin films and their potential application as neural electrode interfaces remains relatively unexplored. Herein, we present a systematic examination of TiC thin films synthesized through nonreactive radio frequency (RF) magnetron sputtering. TiC films were optimized toward high areal capacitance, low impedance, and stable electrochemical cyclability. We varied the RF power and deposition pressure to pinpoint the optimal properties, focusing on the deposition rate, surface roughness, crystallinity, and elemental composition to achieve high areal capacitance and low impedance. The best-performing TiC film showed an areal capacitance of 475 µF/cm2 with a capacitance retention of 93% after 5000 cycles. In addition, the electrochemical performance of the optimum film under varying scanning rates demonstrated a stable electrochemical performance even under dynamic and fast-changing stimulation conditions. Furthermore, the in vitro cell culture for 3 weeks revealed excellent biocompatibility, promoting cell growth compared with a control substrate. This work presents a novel contribution, highlighting the potential of sputtered TiC thin films as robust neural electrode interface materials.


Assuntos
Técnicas de Cultura de Células , Eletrodos
2.
ACS Nano ; 17(9): 8324-8332, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37079914

RESUMO

Direct MXene deposition on large-area 2D semiconductor surfaces can provide design versatility for the fabrication of MXene-based electronic devices (MXetronics). However, it is challenging to deposit highly uniform wafer-scale hydrophilic MXene films (e.g., Ti3C2Tx) on hydrophobic 2D semiconductor channel materials (e.g., MoS2). Here, we demonstrate a modified drop-casting (MDC) process for the deposition of MXene on MoS2 without any pretreatment, which typically degrades the quality of either MXene or MoS2. Different from the traditional drop-casting method, which usually forms rough and thick films at the micrometer scale, our MDC method can form an ultrathin Ti3C2Tx film (ca. 10 nm) based on a MXene-introduced MoS2 surface polarization phenomenon. In addition, our MDC process does not require any pretreatment, unlike MXene spray-coating that usually requires a hydrophilic pretreatment of the substrate surface before deposition. This process offers a significant advantage for Ti3C2Tx film deposition on UV-ozone- or O2-plasma-sensitive surfaces. Using the MDC process, we fabricated wafer-scale n-type Ti3C2Tx-MoS2 van der Waals heterojunction transistors, achieving an average effective electron mobility of ∼40 cm2·V-1·s-1, on/off current ratios exceeding 104, and subthreshold swings of under 200 mV·dec-1. The proposed MDC process can considerably enhance the applications of MXenes, especially the design of MXene/semiconductor nanoelectronics.

3.
Sci Rep ; 5: 9617, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25892711

RESUMO

In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190 °C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

4.
ACS Appl Mater Interfaces ; 5(19): 9615-9, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24025476

RESUMO

P-type Cu2O/SnO bilayer thin film transistors (TFTs) with tunable performance were fabricated using room temperature sputtered copper and tin oxides. Using Cu2O film as capping layer on top of a SnO film to control its stoichiometry, we have optimized the performance of the resulting bilayer transistor. A transistor with 10 nm/15 nm Cu2O to SnO thickness ratio (25 nm total thickness) showed the best performance using a maximum process temperature of 170 °C. The bilayer transistor exhibited p-type behavior with field-effect mobility, on-to-off current ratio, and threshold voltage of 0.66 cm(2) V(-1) s(-1), 1.5×10(2), and -5.2 V, respectively. The advantages of the bilayer structure relative to single layer transistor are discussed.

5.
ACS Nano ; 7(6): 5160-7, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23668750

RESUMO

Here, we report the fabrication of nanoscale (15 nm) fully transparent p-type SnO thin film transistors (TFT) at temperatures as low as 180 °C with record device performance. Specifically, by carefully controlling the process conditions, we have developed SnO thin films with a Hall mobility of 18.71 cm(2) V(-1) s(-1) and fabricated TFT devices with a linear field-effect mobility of 6.75 cm(2) V(-1) s(-1) and 5.87 cm(2) V(-1) s(-1) on transparent rigid and translucent flexible substrates, respectively. These values of mobility are the highest reported to date for any p-type oxide processed at this low temperature. We further demonstrate that this high mobility is realized by careful phase engineering. Specifically, we show that phase-pure SnO is not necessarily the highest mobility phase; instead, well-controlled amounts of residual metallic tin are shown to substantially increase the hole mobility. A detailed phase stability map for physical vapor deposition of nanoscale SnO is constructed for the first time for this p-type oxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA