Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 12(2): 997-1001, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22206357

RESUMO

We use density functional theory to resolve the role of polyvinylpyrrolidone (PVP) in the shape-selective synthesis of Ag nanostructures. At the segment level, PVP binds more strongly to Ag(100) than Ag(111) because of a surface-sensitive balance between direct binding and van der Waals attraction. At the chain level, correlated segment binding leads to a strong preference for PVP bind to Ag(100). Our study underscores differences between small-molecule and polymeric structure-directing agents.


Assuntos
Povidona/química , Prata/química , Adsorção , Estrutura Molecular , Nanoestruturas/química , Teoria Quântica , Propriedades de Superfície
2.
J Phys Chem A ; 116(30): 7862-72, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22770527

RESUMO

Geometries, UV absorption bands, and resonance Raman (RR) cross sections of TNT and RDX are investigated using density functional theory (DFT) in conjunction with the Coulomb attenuated B3LYP exchange-correlation functional. The absorption and RR spectra are determined with use of vibronic (VB) theory, excited-state gradient, and complex polarizability (CPP) approximations. We examined low-energy isomers (two for TNT and four for RDX) whose energies differ by less than 1 kcal/mol, such that they would appreciably be populated at room temperature. The two TNT isomers differ by an internal rotation of the methyl group, while the four conformers of RDX differ by the arrangements of the nitro group relative to the ring. Our theoretical optical properties of the TNT and RDX isomers are in excellent agreement with experimental and recent CCSD-EOM results, respectively. For the two TNT isomers, the ultraviolet RR (UVRR) spectra are similar and in good agreement with recently measured experimental results. Additionally, the UVRR spectra computed using the excited-state and CPP approaches compare favorably with the VB theory results. On the other hand, the RR spectra of the RDX conformers differ from one another, reflecting the importance of the positioning of the NO2 groups with respect to the ring. In the gas phase or in solution, RDX would give a spectrum associated with a conformationally averaged structure. It is encouraging that the computed spectra of the conformers show similarities to recent measured RDX spectra in acetonitrile solution, and reproduce the 10-fold decrease in the absolute Raman cross sections of RDX compared to TNT for the observed 229 nm excitation. We show that in TNT and RDX vibrational bands that couple to NO2 or the ring are particularly resonance enhanced. Finally, the computed RDX spectra of the conformers present a benchmark for understanding the RR spectra of the solid-phase polymorphs of RDX.

3.
J Phys Chem A ; 115(34): 9695-703, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21520925

RESUMO

The stacking parameters, lattice constants, bond lengths, and bulk moduli of pyrophyllite and montmorillonites (MMTs), with alkali and alkali earth metal ions, are investigated using density functional theory with and without dispersion corrections. For pyrophyllite, it is found that the inclusion of the dispersion corrections significantly improves the agreement of the calculated values of the lattice parameters and bulk modulus with the experimental values. For the MMTs, the calculations predict that the interlayer spacing varies approximately linearly with the cation radius. The inclusion of dispersion corrections leads to sizable shifts of the interlayer spacings to shorter values. In Li-MMT, compaction of the interlayer distance triggers migration of the Li ion into the tetrahedral sheet and close coordination with basal oxygen atoms. Analysis of electron density distributions shows that the isomorphic octahedral Al(3+)/Mg(2+) substitution in MMT causes an increase of electron density on the basal oxygen atoms of the tetrahedral sheets.

4.
J Phys Chem A ; 115(23): 5955-64, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21410273

RESUMO

The interaction of a water monomer with a series of linear acenes (benzene, anthracene, pentacene, heptacene, and nonacene) is investigated using a wide range of electronic structure methods, including several "dispersion"-corrected density functional theory (DFT) methods, several variants of the random phase approximation (RPA), DFT-based symmetry-adapted perturbation theory with density fitting (DF-DFT-SAPT), MP2, and coupled-cluster methods. The DF-DFT-SAPT calculations are used to monitor the evolution of the electrostatics, exchange-repulsion, induction, and dispersion contributions to the interaction energies with increasing acene size and also provide the benchmark data against which the other methods are assessed.

5.
J Chem Phys ; 132(13): 134303, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20387929

RESUMO

Localized molecular orbital energy decomposition analysis and symmetry-adapted perturbation theory (SAPT) calculations are used to analyze the two- and three-body interaction energies of four low-energy isomers of (H(2)O)(6) in order to gain insight into the performance of several popular density functionals for describing the electrostatic, exchange-repulsion, induction, and short-range dispersion interactions between water molecules. The energy decomposition analyses indicate that all density functionals considered significantly overestimate the contributions of charge transfer to the interaction energies. Moreover, in contrast to some studies that state that density functional theory (DFT) does not include dispersion interactions, we adopt a broader definition and conclude that for (H(2)O)(6) the short-range dispersion interactions recovered in the DFT calculations account about 75% or more of the net (short-range plus long-range) dispersion energies obtained from the SAPT calculations.

6.
J Chem Phys ; 129(6): 064316, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18715078

RESUMO

We present ab initio calculations of atomic and molecular systems containing the first-, second-, and third-row post-d elements (Ga-Br, In-I, and Tl-At) using several methods including variational and diffusion Monte Carlo. In the quantum Monte Carlo calculations, we used the recent scalar-relativistic energy-consistent Hartree-Fock pseudopotentials [M. Burkatzki et al., J. Chem. Phys. 126, 234105 (2007)], which are nonsingular at the origin. For the first- and second-row elements, the calculated ionization energies and electron affinities are in excellent agreement with those obtained using CCSD(T) with large basis sets and with experiment after correcting approximately for spin-orbit effects. For the third-row elements, where relativistic effects cannot be adequately included by a simple j-averaging, the results are in excellent agreement with CCSD(T) energies obtained with a large (5-zeta) basis set. Benchmark calculations of the dissociation energies, vibration frequencies, and equilibrium bond lengths of several diatomic molecules including As(2), Br(2), Sb(2), and I(2) as well as the hydrides XH (X = Ga, Br, In, I, and At) are presented.

7.
J Phys Condens Matter ; 24(42): 424211, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23032730

RESUMO

Adsorption of noble gases on metal surfaces is determined by weak interactions. We applied two versions of the nonlocal van der Waals density functional (vdW-DF) to compute adsorption energies of Ar, Kr, and Xe on Pt(111), Pd(111), Cu(111), and Cu(110) metal surfaces. We compared our results with data obtained using other density functional approaches, including the semiempirical vdW-corrected DFT-D2. The vdW-DF results show considerable improvements in the description of adsorption energies and equilibrium distances over other DFT based methods, giving good agreement with experiments. We also calculated perpendicular vibrational energies for noble gases on the metal surfaces using vdW-DF data and found excellent agreement with available experimental results. Our vdW-DF calculations show that adsorption of noble gases on low-coordination sites is energetically favored over high-coordination sites, but only by a few meV. Analysis of the two-dimensional potential energy surface shows that the high-coordination sites are local maxima on the two-dimensional potential energy surface and therefore unlikely to be observed in experiments; this provides an explanation of the experimental observations. The DFT-D2 approach with the standard parameterization was found to overestimate the dispersion interactions, and to give the wrong adsorption site preference for four of the nine systems we studied.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Metais/química , Gases Nobres/química , Teoria Quântica , Adsorção
8.
J Chem Theory Comput ; 8(4): 1503-13, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-26596760

RESUMO

The Tkatchenko-Scheffler vdW-TS method [Phys. Rev. Lett.2009, 102, 073005] has been implemented in a plane-wave DFT code and used to characterize several dispersion-dominated systems, including layered materials, noble-gas solids, and molecular crystals. Full optimizations of the structures, including relaxation of the stresses on the unit cells, were carried out. Internal geometrical parameters, lattice constants, bulk moduli, and cohesive energies are reported and compared to experimental results.

9.
J Chem Phys ; 128(15): 154324, 2008 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-18433226

RESUMO

Diffusion Monte Carlo (DMC) calculations are performed on the monocyclic and bicyclic forms of m-benzyne, which are the equilibrium structures at the CCSD(T) and CCSD levels of coupled cluster theory. We employed multiconfiguration self-consistent field trial wave functions which are constructed from a carefully selected eight-electrons-in-eight-orbitals complete active space [CAS(8,8)], with configuration state function coefficients that are reoptimized in the presence of a Jastrow factor. The DMC calculations show that the monocyclic structure is lower in energy than the bicyclic structure by 1.9(2) kcal/mole, which is in excellent agreement with the best coupled cluster results.

10.
J Chem Phys ; 128(11): 114309, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18361573

RESUMO

The use of an approximate reference state wave function mid R:Phi(r) in electronic many-body methods can break the spin symmetry of Born-Oppenheimer spin-independent Hamiltonians. This can result in significant errors, especially when bonds are stretched or broken. A simple spin-projection method is introduced for auxiliary-field quantum Monte Carlo (AFQMC) calculations, which yields spin-contamination-free results, even with a spin-contaminated mid R:Phi(r). The method is applied to the difficult F(2) molecule, which is unbound within unrestricted Hartree-Fock (UHF). With a UHF mid R:Phi(r), spin contamination causes large systematic errors and long equilibration times in AFQMC in the intermediate, bond-breaking region. The spin-projection method eliminates these problems and delivers an accurate potential energy curve from equilibrium to the dissociation limit using the UHF mid R:Phi(r). Realistic potential energy curves are obtained with a cc-pVQZ basis. The calculated spectroscopic constants are in excellent agreement with experiment.

11.
J Chem Phys ; 127(14): 144101, 2007 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-17935380

RESUMO

Bond stretching mimics different levels of electron correlation and provides a challenging test bed for approximate many-body computational methods. Using the recently developed phaseless auxiliary-field quantum Monte Carlo (AF QMC) method, we examine bond stretching in the well-studied molecules BH and N(2) and in the H(50) chain. To control the sign/phase problem, the phaseless AF QMC method constrains the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. With single Slater determinants from unrestricted Hartree-Fock as trial wave function, the phaseless AF QMC method generally gives better overall accuracy and a more uniform behavior than the coupled cluster CCSD(T) method in mapping the potential-energy curve. In both BH and N(2), we also study the use of multiple-determinant trial wave functions from multiconfiguration self-consistent-field calculations. The increase in computational cost versus the gain in statistical and systematic accuracy are examined. With such trial wave functions, excellent results are obtained across the entire region between equilibrium and the dissociation limit.

12.
J Chem Phys ; 126(19): 194105, 2007 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-17523796

RESUMO

The authors present phaseless auxiliary-field (AF) quantum Monte Carlo (QMC) calculations of the ground states of some hydrogen-bonded systems. These systems were selected to test and benchmark different aspects of the new phaseless AF QMC method. They include the transition state of H+H(2) near the equilibrium geometry and in the van der Walls limit, as well as the H(2)O, OH, and H(2)O(2) molecules. Most of these systems present significant challenges for traditional independent-particle electronic structure approaches, and many also have exact results available. The phaseless AF QMC method is used either with a plane wave basis with pseudopotentials or with all-electron Gaussian basis sets. For some systems, calculations are done with both to compare and characterize the performance of AF QMC under different basis sets and different Hubbard-Stratonovich decompositions. Excellent results are obtained using as input single Slater determinant wave functions taken from independent-particle calculations. Comparisons of the Gaussian based AF QMC results with exact full configuration interaction show that the errors from controlling the phase problem with the phaseless approximation are small. At the large basis-size limit, the AF QMC results using both types of basis sets are in good agreement with each other and with experimental values.

13.
J Chem Phys ; 125(15): 154110, 2006 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17059242

RESUMO

A series of calculations for the first- and second-row post-d elements (Ga-Br and In-I) are presented using the phaseless auxiliary-field quantum Monte Carlo (AF QMC) method. This method is formulated in a Hilbert space defined by any chosen one-particle basis and maps the many-body problem into a linear combination of independent-particle solutions with external auxiliary fields. The phase/sign problem is handled approximately by the phaseless formalism using a trial wave function, which in our calculations was chosen to be the Hartree-Fock solution. We used the consistent correlated basis sets of Peterson et al. [J. Chem. Phys. 119, 11099 (2003); 119, 11113 (2003)], which employ a small-core relativistic pseudopotential. The AF QMC results are compared with experiment and with those from density functional (generalized gradient approximation and B3LYP) and CCSD(T) calculations. The AF QMC total energies agree with CCSD(T) to within a few millihartrees across the systems and over several basis sets. The calculated atomic electron affinities, ionization energies, and spectroscopic properties of dimers are, at large basis sets, in excellent agreement with experiment.

14.
J Chem Phys ; 124(22): 224101, 2006 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-16784257

RESUMO

We extend the recently introduced phaseless auxiliary-field quantum Monte Carlo (QMC) approach to any single-particle basis and apply it to molecular systems with Gaussian basis sets. QMC methods in general scale favorably with the system size as a low power. A QMC approach with auxiliary fields, in principle, allows an exact solution of the Schrodinger equation in the chosen basis. However, the well-known sign/phase problem causes the statistical noise to increase exponentially. The phaseless method controls this problem by constraining the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. In the present calculations, the trial wave function is a single Slater determinant from a Hartree-Fock calculation. The calculated all-electron total energies show typical systematic errors of no more than a few millihartrees compared to exact results. At equilibrium geometries in the molecules we studied, this accuracy is roughly comparable to that of coupled cluster with single and double excitations and with noniterative triples [CCSD(T)]. For stretched bonds in H(2)O, our method exhibits a better overall accuracy and a more uniform behavior than CCSD(T).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA