Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Death Discov ; 5: 87, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30993013

RESUMO

The interaction between cancer cells and molecular cues provided by tumor stromal cells plays a crucial role in cancer growth and progression. We have recently reported that the outcome of interaction between tumor cells and stromal cells is dependent on the gene expression signature of tumor cells. In the current study, we observed that several cancer cell lines, e.g., MCF7 breast cancer line, exhibited growth advantage when cultured in the presence of conditioned media (CM) derived from human bone marrow stromal stem cells (hBMSCs). Regarding the underlying molecular mechanism, we have identified CXCR7 as highly expressed by MCF7 cells and that it mediated the enhanced growth in response to hBMSC CM. Regarding the clinical relevance, we found an inverse correlation between the level of tumor gene expression of CXCR7 in bladder, breast, cervical, kidney, liver, lung, pancreatic, stomach, and uterine cancers, and patients' overall survival. Interestingly, significant positive correlation between CXCR7 and CXCL12 gene expression (Pearson = 0.3, p = 2.0 × 10-16) was observed in breast cancer patients, suggesting a biological role for the CXCR7/CXCL12 genetic circuit in breast cancer biology. Our data provide insight into the molecular mechanisms by which stromal-derived microenvironmental cues mediate CXCR7 signaling and growth enhancement of breast cancer cells. Therapeutic targeting of this circuit might provide novel therapeutic opportunity for breast cancer.

2.
Sci Rep ; 9(1): 8101, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147574

RESUMO

Bone marrow stromal (Mesenchymal) stem cells (MSCs) are multipotent bone cells capable of differentiating into mesoderm-type cells, such as osteoblasts and adipocytes. Existing evidence suggests that transformation of MSCs gives rise to sarcoma. In order to identify the molecular mechanism leading to spontaneous transformation of human bone marrow MSCs (hBMSCs), we performed comprehensive microRNA (miRNA) and mRNA profiling in the transformed hBMSC-Tum line compared to the parental clone. As a result, we identified multiple dysregulated molecular networks associated with the hBMSC transformed phenotype. LIN28B was upregulated 177.0-fold in hBMSC-Tum, which was associated with marked reduction in LET-7 expression and upregulated expression of its target HMGA2. Targeted depletion of LIN28B or exogenous expression of LET-7b suppressed hBMSC-Tum proliferation, colony formation, and migration. On the other hand, forced expression of LIN28B promoted malignant transformation of parental hBMSC cells as shown by enhanced in vitro colony formation, doxorubicin resistance, and in vivo tumor formation in immunocompromised mice. Analysis of LIN28B and HMGA2 expression levels in cohorts from The Cancer Genome Atlas sarcoma dataset revealed a strong inverse-relationship between elevated expression and overall survival (OS) in 260 patients (p = 0.005) and disease-free survival (DFS) in 231 patients (p = 0.02), suggesting LIN28B and HMGA2 are important regulators of sarcoma biology. Our results highlight an important role for the LIN28B/LET-7 axis in human sarcoma pathogenesis and suggest that the therapeutic targeting of LIN28B may be relevant for patients with sarcoma.


Assuntos
Transformação Celular Neoplásica/genética , Proteína HMGA2/genética , Células-Tronco Mesenquimais/patologia , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Sarcoma/genética , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Estudos de Coortes , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Células-Tronco Mesenquimais/metabolismo , Sarcoma/tratamento farmacológico , Sarcoma/mortalidade , Sarcoma/patologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Stem Cell Res Ther ; 6: 135, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26204886

RESUMO

INTRODUCTION: Tumor microenvironment conferred by stromal (mesenchymal) stem cells (MSCs) plays a key role in tumor development, progression, and response to therapy. Defining the role of MSCs in tumorigenesis is crucial for their safe utilization in regenerative medicine. Herein, we conducted comprehensive investigation of the cross-talk between human MSCs (hMSCs) and 12 cancer cell lines derived from breast, prostate, colon, head/neck and skin. METHODS: Human bone marrow-derived MSC line expressing green fluorescence protein (GFP) (hMSC-GFP) were co-cultured with the following cancer cell lines: (MCF7, BT-20, BT-474, MDA-MB-468, T-47D, SK-BR-3, MDA-MB-231, PC-3, HT-29, MDA-MB-435s, and FaDu) and changes in their morphology were assessed using fluorescent microscopy. For cellular tracking, cells were labeled with Vybrant DiO, DiL, and DiD lipophilic dyes. Time-lapse microscopy was conducted using Nikon BioStation IM-Q. Stable expression of mCherry, and luciferase genes was achieved using lentiviral technology. IL1-Beta neutralizing experiments were conducted using soluble recombinant IL-1R (srIL-1R). Changes in gene expression in sorted hMSCs were assessed using Agilent microarray platform while data normalization and bioinformatics were conducted using GeneSpring software. RESULTS: We observed a dynamic interaction between cancer cells and hMSCs. High CDH1 (E-cadherin) and low IL1-Beta expression by cancer cells promoted reorganization of hMSCs into a niche-like formation, which was dependent on direct cell-cell contact. Our data also revealed transfer of cellular components between cancer cells and hMSCs as one possible mechanism for intercellular communication. Global gene expression analysis of sorted hMSCs following co-culturing with MCF7 and BT-20 cells revealed enrichment in signaling pathways related to bone formation, FAK and MAPKK signaling. Co-culturing hMSCs with MCF7 cells increased their growth evidenced by increase in Ki67 and PCNA staining in tumor cells in direct contact with hMSCs niche. On the other hand, co-culturing hMSCs with FaDu, HT-29 or MDA-MB-231 cells led remarkable decline in their cell growth. CONCLUSIONS: Dynamic interaction exists between hMSCs and cancer cells. CDH1 and IL1-Beta expression by cancer cells mediates the crosstalk between hMSCs and cancer cells. We propose a model where hMSCs act as the first line of defense against cancer cell growth and spread.


Assuntos
Proteínas Cdh1/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptores de Interleucina-1/metabolismo , Proteínas Cdh1/genética , Comunicação Celular/genética , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Técnicas de Cocultura , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Células MCF-7 , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Receptores de Interleucina-1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Stem Cell Res Ther ; 4(5): 114, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24405819

RESUMO

INTRODUCTION: Studying cancer tumors' microenvironment may reveal a novel role in driving cancer progression and metastasis. The biological interaction between stromal (mesenchymal) stem cells (MSCs) and cancer cells remains incompletely understood. Herein, we investigated the effects of tumor cells' secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. METHODS: Morphological changes were assessed using fluorescence microscopy. Changes in gene expression were assessed using Agilent microarray and qRT-PCR. GeneSpring 12.1 and DAVID tools were used for bioinformatic and signaling pathway analyses. Cell migration was assessed using a transwell migration system. SB-431542, PF-573228 and PD98059 were used to inhibit transforming growth factor ß (TGFß), focal adhesion kinase (FAK), and mitogen activated protein kinase kinase (MAPKK) pathways, respectively. Interleukin-1ß (IL1ß) was measured using ELISA. RESULTS: MSCs exposed to secreted factors present in conditioned media (CM) from FaDu, MDA-MB-231, PC-3 and NCI-H522, but not from MCF7 and HT-29, developed an elongated, spindle-shaped morphology with bipolar processes. In association with phenotypic changes, genome-wide gene expression and bioinformatics analysis revealed an enhanced pro-inflammatory response of those MSCs. Pharmacological inhibitions of FAK and MAPKK severely impaired the pro-inflammatory response of MSCs to tumor CM (approximately 80% to 99%, and 55% to 88% inhibition, respectively), while inhibition of the TGFß pathway was found to promote the pro-inflammatory response (approximately 3-fold increase). In addition, bioinformatics and pathway analysis of gene expression data from tumor cell lines combined with experimental validation revealed tumor-derived IL1ß as one mediator of the pro-inflammatory phenotype observed in MSCs exposed to tumor CM. CONCLUSIONS: Our data revealed tumor-derived IL1ß as one mediator of the pro-inflammatory response in MSCs exposed to tumor CM, which was found to be positively regulated by FAK and MAPK signaling and negatively regulated by TGFß signaling. Thus, our data support a model where MSCs could promote cancer progression through becoming pro-inflammatory cells within the cancer stroma.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CXCL5/metabolismo , Quimiocina CXCL6/metabolismo , Análise por Conglomerados , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HT29 , Humanos , Interleucina-6/metabolismo , Células MCF-7 , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Osteogênese/efeitos dos fármacos , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA