Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Cancer ; 22(1): 599, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650591

RESUMO

The full-length BRCA1-associated RING domain 1 (BARD1) gene encodes a 777-aa protein. BARD1 displays a dual role in cancer development and progression as it acts as a tumor suppressor and an oncogene. Structurally, BARD1 has homologous domains to BRCA1 that aid their heterodimer interaction to inhibit the progression of different cancers such as breast and ovarian cancers following the BRCA1-dependant pathway. In addition, BARD1 was shown to be involved in other pathways that are involved in tumor suppression (BRCA1-independent pathway) such as the TP53-dependent apoptotic signaling pathway. However, there are abundant BARD1 isoforms exist that are different from the full-length BARD1 due to nonsense and frameshift mutations, or deletions were found to be associated with susceptibility to various cancers including neuroblastoma, lung, breast, and cervical cancers. This article reviews the spectrum of BARD1 full-length genes and its different isoforms and their anticipated associated risk. Additionally, the study also highlights the role of BARD1 as an oncogene in breast cancer patients and its potential uses as a prognostic/diagnostic biomarker and as a therapeutic target for cancer susceptibility testing and treatment.


Assuntos
Neoplasias , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Feminino , Genes Supressores de Tumor , Humanos , Neoplasias/genética , Isoformas de Proteínas/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Medicina (Kaunas) ; 58(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422197

RESUMO

Background: Autosomal dominant polycystic kidney disease (ADPKD) is a condition usually caused by a single gene mutation and manifested by both renal and extrarenal features, eventually leading to end-stage renal disease (ESRD) by the median age of 60 years worldwide. Approximately 89% of ADPKD patients had either PKD1 or PKD2 gene mutations. The majority (85%) of the mutations are in the PKD1 gene, especially in the context of family history. Objectives: This study investigated the genetic basis and the undiscovered genes that are involved in ADPKD development among the Saudi population. Materials and Methods: In this study, 11 patients with chronic kidney disease were enrolled. The diagnosis of ADPKD was based on history and diagnostic images: CT images include enlargement of renal outlines, renal echogenicity, and presence of multiple renal cysts with dilated collecting ducts, loss of corticomedullary differentiation, and changes in GFR and serum creatinine levels. Next-generation whole-exome sequencing was conducted using the Ion Torrent PGM platform. Results: Of the 11 Saudi patients diagnosed with chronic kidney disease (CKD) and ADPKD, the most common heterozygote nonsynonymous variant in the PKD1 gene was exon15: (c.4264G > A). Two missense mutations were identified with a PKD1 (c.1758A > C and c.9774T > G), and one patient had a PKD2 mutation (c.1445T > G). Three detected variants were novel, identified at PKD1 (c.1758A > C), PKD2L2 (c.1364A > T), and TSC2 (deletion of a'a at the 3'UTR, R1680C) genes. Other variants in PKD1L1 (c.3813_381 4delinsTG) and PKD1L2 (c.404C > T) were also detected. The median age of end-stage renal disease for ADPK patients in Saudi Arabia was 30 years. Conclusion: This study reported a common variant in the PKD1 gene in Saudi patients with typical ADPKD. We also reported (to our knowledge) for the first time two novel missense variants in PKD1 and PKD2L2 genes and one indel mutation at the 3'UTR of the TSC2 gene. This study establishes that the reported mutations in the affected genes resulted in ADPKD development in the Saudi population by a median age of 30. Nevertheless, future protein−protein interaction studies to investigate the influence of these mutations on PKD1 and PKD2 functions are required. Furthermore, large-scale population-based studies to verify these findings are recommended.


Assuntos
Falência Renal Crônica , Rim Policístico Autossômico Dominante , Insuficiência Renal Crônica , Adulto , Humanos , Regiões 3' não Traduzidas , Proteínas de Membrana/genética , Mutação/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/diagnóstico , Arábia Saudita , Canais de Cátion TRPP/genética , Sequenciamento do Exoma
3.
EMBO Rep ; 16(8): 986-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26142279

RESUMO

The mammalian INO80 remodelling complex facilitates homologous recombination (HR), but the mechanism by which it does this is unclear. Budding yeast INO80 can remove H2A.Z/H2B dimers from chromatin and replace them with H2A/H2B dimers. H2A.Z is actively incorporated at sites of damage in mammalian cells, raising the possibility that H2A.Z may need to be subsequently removed for resolution of repair. Here, we show that H2A.Z in human cells is indeed rapidly removed from chromatin flanking DNA damage by INO80. We also report that the histone chaperone ANP32E, which is implicated in removing H2AZ from chromatin, similarly promotes HR and appears to work on the same pathway as INO80 in these assays. Importantly, we demonstrate that the HR defect in cells depleted of INO80 or ANP32E can be rescued by H2A.Z co-depletion, suggesting that H2A.Z removal from chromatin is the primary function of INO80 and ANP32E in promoting homologous recombination.


Assuntos
DNA Helicases/metabolismo , Histonas/metabolismo , Recombinação Homóloga , ATPases Associadas a Diversas Atividades Celulares , Linhagem Celular Tumoral , Cromatina/genética , Montagem e Desmontagem da Cromatina , Dano ao DNA , DNA Helicases/genética , Reparo do DNA , Proteínas de Ligação a DNA , Técnicas de Silenciamento de Genes , Células HeLa , Histonas/genética , Humanos , Chaperonas Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Interferente Pequeno
4.
J Biol Chem ; 289(33): 22614-22629, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24990942

RESUMO

Yin Yang 1 (YY1) is a transcription factor regulating proliferation and differentiation and is involved in cancer development. Oligomers of recombinant YY1 have been observed before, but their structure and DNA binding properties are not well understood. Here we find that YY1 assembles several homo-oligomeric species built from the association of a bell-shaped dimer, a process we characterized by electron microscopy. Moreover, we find that YY1 self-association also occurs in vivo using bimolecular fluorescence complementation. Unexpectedly, these oligomers recognize several DNA substrates without the consensus sequence for YY1 in vitro, and DNA binding is enhanced in the presence of RuvBL1-RuvBL2, two essential AAA+ ATPases. YY1 oligomers bind RuvBL1-RuvBL2 hetero-oligomeric complexes, but YY1 interacts preferentially with RuvBL1. Collectively, these findings suggest that YY1-RuvBL1-RuvBL2 complexes could contribute to functions beyond transcription, and we show that YY1 and the ATPase activity of RuvBL2 are required for RAD51 foci formation during homologous recombination.


Assuntos
Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , DNA/metabolismo , Complexos Multiproteicos/metabolismo , Multimerização Proteica/fisiologia , Fator de Transcrição YY1/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Transporte/genética , Linhagem Celular , DNA/genética , DNA Helicases/genética , Recombinação Homóloga/fisiologia , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Ligação Proteica/fisiologia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Transcrição Gênica/fisiologia , Fator de Transcrição YY1/genética
5.
Cancers (Basel) ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36831624

RESUMO

Genome-wide association studies have reported link between SNPs and risk of breast cancer. This study investigated the association of the selected gene variants by predicting them as possible target genes. Molecular technique advances with the availability of whole-exome sequencing (WES), now offer opportunities for simultaneous investigations of many genes. The experimental protocol for PI3K, AKT-1, KLF-14, MDM4, miRNAs 27a, and miR-196a genotyping was done by ARMS-PCR and sanger sequencing. The novel and known gene variants were studied by Whole-exome sequencing using Illumina NovaSeq 6000 platform. This case control study reports significant association between BC patients, healthy controls with the polymorphic variants of PI3K C > T, AKT-1 G > A KLF 14 C > T, MDM4 A > G, miR-27a A > G, miR-196a-2 C > T genes (p < 0.05). MDM4 A > G genotypes were strongly associated with BC predisposition with OR 2.08 & 2.15, p < 0.05) in codominant and dominant models respectively. MDM4 A allele show the same effective (OR1.76, p < 0.05) whereas it remains protective in recessive model for BC risk. AKT1G > A genotypes were strongly associated with the BC susceptibility in all genetic models whereas PI3K C > T genotypes were associated with breast cancer predisposition in recessive model OR 6.96. Polymorphic variants of KLF-14 A > G, MDM4G > A, MiR-27aA >G, miR-196a-C > T were strongly associated with stage, tamoxifen treatment. Risk variants have been reported by whole exome sequencing in our BC patients. It was concluded that a strong association between the PI3K-AKT signaling pathway gene variants with the breast cancer susceptibility and progression. Similarly, KLF 14-AA, MDM4-GA, miR27a-GG and miR-196a-CT gene variants were associated with the higher risk probability of BC and were strongly correlated with staging of the BC patients. This study also reported Low, novel, and intermediate-genetic-risk variants of PI3K, AKT-1, MDM4G & KLF-14 by utilizing whole-exome sequencing. These variants should be further investigated in larger cohorts' studies.

6.
Cancers (Basel) ; 15(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36831357

RESUMO

BACKGROUND: The findings of earlier investigations of antiapoptotic gene genotypes and allele variants on lymphoma risk are ambiguous. This study aimed to examine the relationship between the mutation in the antiapoptotic genes and lymphoma risk among Saudi patients. METHODS: This case-control study included 205 patients, 100 of whom had lymphoma (cases) and 105 who were healthy volunteers (controls). We used tetra amplification refractory mutation polymerase chain reaction (PCR) to identify antiapoptotic genes such as B-cell lymphoma-2 (BCL2-938 C > A), MCL1-rs9803935 T > G, and survivin (BIRC5-rs17882312 G > C and BIRC5-rs9904341 G > C). Allelic-specific PCR was used to identify alleles such as BIRC5-C, MCL1-G, and BIRC5-G. RESULTS: The dominant inheritance model among cases showed that mutations in all four antiapoptotic genes were more likely to be associated with the risk of lymphoma by the odds of 2.0-, 1.98-, 3.90-, and 3.29-fold, respectively, compared to controls. Apart from the BCL-2-A allele, all three specified alleles were more likely to be associated with lymphoma by the odds of 2.04-, 1.65-, and 2.11-fold, respectively. CONCLUSION: Unlike healthy individuals, lymphoma patients are more likely to have antiapoptotic gene genotypes and allele variants, apart from BCL-2-A alterations. In the future, these findings could be used to classify and identify patients at risk of lymphoma.

7.
Vaccines (Basel) ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298446

RESUMO

The unprecedented health catastrophe derived from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 infection) met with a phenomenal scientific response across the globe. Worldwide, the scientific community was focused on finding a cure for the deadly disease. A wide range of research studies has consistently revealed the link between SARS-CoV-2 infection severity and abnormal gut microbiomes, suggesting its potential in developing novel therapeutic approaches. Probiotics have been extensively studied to promote health in human hosts and reestablish a balance in the dysbiotic gut microbiome; however, there is strong skepticism about their safety and efficacy. Consequently, the metabolic signatures of probiotics, often referred to as "postbiotics", could prove of paramount importance for adjuvant cures in patients with SARS-CoV-2. Postbiotics exhibit safety, enhanced shelf-life, and stability and, therefore, could be implemented in SARS-CoV-2 prophylactic strategies with no undue adverse side effects. The current study is a preliminary investigation of the antiviral properties of postbiotic metabolites derived from Leuconostoc mesenteroides GBUT-21. The study focuses on the potential biological role in inactivating SARS-CoV-2 and reducing related inflammatory pathways.

8.
Diagnostics (Basel) ; 12(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35885629

RESUMO

Makkah in Saudi Arabia hosts the largest annual religious event in the world. Despite the many strict rules enacted, including Hajj cancellation, city lockdowns, and social distancing, the region has the second highest number of new COVID-19 cases in Saudi Arabia. Public health interventions that identify, isolate, and manage new cases could slow the infection rate. While RT-PCR is the current gold standard in SARS-CoV-2 identification, it yields false positive and negative results, which mandates the use of complementary serological tests. Here, we report the utility of serological assays during the acute phase of individuals with moderate and severe clinical manifestations of SARS-CoV-2 (COVID19). Fifty participants with positive RT-PCR results for SARS-CoV-2 were enrolled in this study. Following RT-PCR diagnosis, serum samples from the same participants were analyzed using in-house ELISA (IgM, IgA, and IgG) and microneutralization test (MNT) for the presence of antibodies. Of the 50 individuals analyzed, 43 (86%) showed a neutralizing antibody titer of ≥20. Univariate analysis with neutralizing antibodies as a dependent variable and the degree of disease severity and underlying medical conditions as fixed factors revealed that patients with no previous history of non-communicable diseases and moderate clinical manifestation had the strongest neutralizing antibody response "Mean: 561.11". Participants with severe symptoms and other underlying disorders, including deceased individuals, demonstrated the lowest neutralizing antibody response. Anti-spike protein antibody responses, as measured by ELISA, showed a statistically significant correlation with neutralizing antibodies. This reinforces the speculation that serological assays complement molecular testing for diagnostics; however, patients' previous medical history (anamnesis) should be considered in interpreting serological results.

9.
Mol Genet Genomic Med ; 9(7): e1707, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34036740

RESUMO

BACKGROUND: Testis expressed 19 (TEX19) is a specific human stem cell gene identified as cancer-testis antigen (CTA), which emerged as a potential therapeutic drug target. TEX19.1, a mouse paralog of human TEX19, can interact with LINE-1 retrotransposable element ORF1 protein (LIRE1) and subsequently restrict mobilization of LINE-1 elements in the genome. AIM: This study aimed to predict the interaction of TEX19 with LIRE1 and analyze TEX19 missense polymorphisms. TEX19 model was generated using I-TASSER and the interaction between TEX19 and LIRE1 was studied using the HADDOCK software. METHODS: The stability of the docking formed complex was studied through the molecular dynamic simulation using GROMACS. Missense SNPs (n=102) of TEX19 were screened for their potential effects on protein structure and function using different software. RESULTS: Outcomes of this study revealed amino acids that potentially stabilize the predicted interaction interface between TEX19 and LIRE1. Of these SNPs, 37 were predicted to play a probably damaging role for the protein, three of them (F35S, P61R, and E55L) located at the binding site of LIRE1 and could disturb this binding affinity. CONCLUSION: This information can be verified by further in vitro and in vivo experimentations and could be exploited for potential therapeutic targets.


Assuntos
Simulação de Acoplamento Molecular , Mutação de Sentido Incorreto , Proteínas de Ligação a RNA , Humanos , Sítios de Ligação , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA