Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(4): 3279-3286, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28085160

RESUMO

The nature of isolated nitrogen-dopants in bulk BaO (N-BaO) and their magnetic interaction have been investigated by means of density functional theory calculations based on hybrid, self-interaction corrected functionals. A thermodynamic analysis shows that N is preferably incorporated into interstitial sites. Only at very high temperatures and under oxygen poor-conditions the formation of N dopants substitutional to O is preferred. The spin density is rather localized in both cases, as proven by the calculation of the hyperfine coupling constants of the electron spin with the nuclear spin of nitrogen. The magnetic interaction of two N defects in various configurations has been considered as a function of their distance. Different behaviors have been observed, depending on the position of the N defects and on the nature of the dominating magnetic mechanism. In any case, the computed Curie temperature is below room temperature, suggesting that RT ferromagnetism cannot be attained for this kind of doping in BaO. Finally, the interplay of oxygen vacancies with the N dopants has been studied. The inclusion of nitrogen has the effect of drastically reducing the cost to create oxygen vacancies. These in turn quench the magnetic moment of N-dopants, contributing to reducing the concentration of magnetic impurities.

2.
Angew Chem Int Ed Engl ; 56(10): 2604-2607, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28128485

RESUMO

We report direct evidence for quintuplet spin states in a particular kind of reduced TiO2 anatase obtained by the mild oxidation of TiB2 under hydrothermal conditions. Continuous-wave and pulse EPR spectroscopy at X and Q band frequencies provide compelling evidence for the presence of S=2 states, stable in a wide range of temperatures up to room temperature. A tentative model, corroborated by spin-polarized DFT calculations, is proposed, which consists of four ferromagnetically interacting Ti3+ ions with distances ranging from 0.5 nm to 0.8 nm and tetrahedral arrangement.

3.
RSC Adv ; 14(9): 6398-6409, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38380234

RESUMO

The energetic transition towards renewable resources is one of the biggest challenges of this century. In this context, the role of H2 is of paramount importance as a key source of energy that could substitute traditional fossil fuels. This technology, even if available in several manufactures, still needs to be optimized at all levels (production, storage and distribution) to be integrated on a larger scale. Among materials suitable to store H2, Mg(BH4)2 is particularly interesting due to its high content of H2 in terms of gravimetric density. Nanosizing effects and role of additives in the decomposition of Mg(BH4)2 were studied by density functional theory (DFT) modelling. Both effects were analyzed because of their contribution in promoting the decomposition of the material. In particular, to have a quantitative idea of nanosizing effects, we used thin film 2D models corresponding to different crystallographic surfaces and referred to the following reaction: Mg(BH4)2 → MgB2 + 4H2. When moving from bulk to nanoscale (2D models), a remarkable decrease in the decomposition energy (10-20 kJ mol-1) was predicted depending on the surface and the thin film thickness considered. As regards the role of additives (Ni and Cu), we based our analysis on their effect in perturbing neighboring borohydride groups. We found a clear elongation of some B-H bonds, in particular with the NiF2 additive (about 0.1 Å). We interpreted this behavior as an indicator of the propensity of borohydride towards dissociation. On the basis of this evidence, we also explored a possible reaction pathway of NiF2 and CuF2 on Mg(BH4)2 up to H2 release and pointed out the major catalytic effect of Ni compared to Cu.

4.
J Phys Condens Matter ; 31(14): 145503, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30650395

RESUMO

CuWO4 is a semiconducting oxide with interesting applications in photocatalysis. In this paper we present an accurate study of the electronic properties of stoichiometric and oxygen deficient CuWO4 based on a dielectric dependent hybrid density functional. In CuWO4 the Cu ions (Cu2+) are in a 3d9 configuration, so that the material must be classified as a magnetic insulator. Various magnetic configurations of CuWO4 have been considered, the most stable configuration being anti-ferromagnetic. The band structure, described in terms of density of states (DOS), exhibit the presence of a wide band dominated by W 5d states, separated by about 5 eV from the top of the valence band (VB), consisting of O 2p states partly mixed with Cu 3d states. The empty component of the Cu 3d orbitals forms a narrow band 3.6 eV above the VB maximum. The electronic structure emerging from the DOS curves and the Kohn-Sham energies is hard to reconcile with an experimental band gap of 2.1-2.3 eV. This gap can be rationalized within the Mott-Hubbard model of magnetic insulators, and has been computed from the total energies of the system with one electron removed from the O 2p band and one electron added to the Cu 3d states. Computing the charge transition levels for CuWO4, we come to a theoretical band gap of 2.1 eV, in excellent agreement with the experimental observations. We also studied the nature of the oxygen vacancy in CuWO4 with particular attention to the electron redistribution following the oxygen removal. The excess electrons, in fact, can occupy the localized 3d states of Cu or the localized 5d states of W. The resulting solution depends on various factors, including the concentration of oxygen vacancies.

5.
ACS Omega ; 3(5): 5301-5307, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458739

RESUMO

Bulk ZrO2 is both nonreducible and nonmagnetic. Recent experimental results show that dopant-free, oxygen-deficient ZrO2-x nanostructures exhibit a ferromagnetic behavior at room temperature (RT). Here, we provide a comprehensive theoretical foundation for the observed RT ferromagnetism of zirconia nanostructures. ZrO2 nanoparticles containing up to 700 atoms (3 nm) have been studied with the help of density functional theory. Oxygen vacancies in ZrO2 nanoparticles form more easily than in bulk zirconia and result in electrons trapped in 4d levels of low-coordinated Zr ions. Provided the number of these sites exceeds that of excess electrons, the resulting ground state is high spin and the ordering is ferromagnetic. The work provides a general basis to explain magnetism in intrinsically nonmagnetic oxides without the help of dopants.

6.
ACS Appl Mater Interfaces ; 9(27): 23212-23221, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28622467

RESUMO

The nature of the interaction of water with the WO3 surface is of crucial importance for the use of this semiconductor oxide in photocatalysis. In this work, we investigate water adsorption and dissociation on both clean and O-deficient (001) WO3 surfaces by means of an accurate DFT approach. The O vacancy formation energy (computed with respect to O2) has been evaluated for all possible surface configurations, and the removal of the terminal O atom along the c axis is found to be preferred, costing about half the corresponding energy in the bulk. The presence of oxygen vacancies leads to a semiconductor to metal transition, confirming the experimental evidence of n-type conductivity in defective WO3 films. H2O preferably adsorbs on WO3 in a molecular undissociated form, due to the presence of W ions at the surface that act as Lewis acid sites. This interaction, about -1 eV per H2O molecule, is not very strong. Contrary to what is usually expected, the presence of oxygen vacancies does not significantly affect H2O adsorption. Finally, we investigated the H2O desorption from a hydroxylated surface. This suggests that the exposure of WO3 to H2 directly results in a hydroxylated surface and the corresponding H2O desorption turns out to be a very efficient mechanism to generate a reduced oxide surface, with important consequences on the electronic structure of this oxide.

7.
Sci Rep ; 6: 31435, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27527493

RESUMO

N-dopants in bulk monoclinic ZrO2 and their magnetic interactions have been investigated by DFT calculations, using the B3LYP hybrid functional. The electronic and magnetic properties of the paramagnetic N species, substitutionals and interstitials, are discussed. Their thermodynamic stability has been estimated as a function of the oxygen partial pressure. At 300 K, N prefers interstitial sites at any range of oxygen pressure, while at higher temperatures (700-1000 K), oxygen poor-conditions facilitate substitutional dopants. We have considered the interaction of two N defects in various positions in order to investigate the possible occurrence of ferromagnetic ordering. A very small magnetic coupling constant has been calculated for several 2N-ZrO2 configurations, thus demonstrating that magnetic ordering can be achieved only at very low temperatures, well below liquid nitrogen. Furthermore, when N atoms replace O at different sites, resulting in slightly different positions of the corresponding N 2p levels, a direct charge transfer can occur between the two dopants with consequent quenching of the magnetic moment. Another mechanism that contributes to the quenching of the N magnetic moments is the interplay with oxygen vacancies. These effects contribute to reduce the concentration of magnetic impurities, thus limiting the possibility to establish magnetic ordering.

8.
ChemSusChem ; 7(12): 3382-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25302675

RESUMO

A series of mixed-ligand [1,4-benzenedicarboxylic acid (BDC)/2-amino-1,4-benzenedicarboxylic acid (ABDC)] UiO-66 metal-organic frameworks (MOFs) synthesized through two different methods (low (LT) and high temperature (HT)) have been investigated for their carbon dioxide adsorption properties from 0 to 1 bar to clarify the role of amino loading on carbon dioxide uptake. Volumetric CO2 isotherms show that the CO2 capacity (normalized to the Langmuir surface area) increases with a degree of functionalization of about 46%; for similar NH2 contents, the same values are found for both synthetic procedures. Microcalorimetric isotherms reveal that amino-functionalized materials have a larger differential heat of adsorption (q(diff) ) towards CO2 ; reaching 27(25) and 20(22) kJ mol(-1) on HT(LT)-UiO-66-NH2 and UiO-66, respectively, at the lowest equilibrium pressures used in this study. All experimental results are supported by values obtained through quantum mechanical calculations.


Assuntos
Aminas/química , Dióxido de Carbono/química , Metais/química , Compostos Orgânicos/química , Adsorção , Ligantes , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Dalton Trans ; 42(18): 6450-8, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23467685

RESUMO

FTIR spectroscopy and ab initio molecular modelling have been employed to probe the interaction between CO and Ni3(BTP)2, a thermally and chemically stable MOF. A combination of low pressure adsorption isotherms and FTIR spectroscopy has been utilised to study the material for its interaction with CO2 and H2. The experimental results indicate that despite an abundance of Ni(2+) coordination vacancies in the activated sample, the molecular probes considered in this study do not interact with them. These findings are in alignment with the data obtained by molecular modelling, in which it is shown that the unreactive diamagnetic, low spin state is more stable. Due to the strong N-donor character of the pyrazolate ligands on this material, the electrostatic potential map of the optimized low spin structure does not show any evidence of a region of positive potential typical of open metal sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA