Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(19): e2121037119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35512092

RESUMO

Studies from a variety of species indicate that arginine­vasopressin (AVP) and its V1a receptor (Avpr1a) play a critical role in the regulation of a range of social behaviors by their actions in the social behavior neural network. To further investigate the role of AVPRs in social behavior, we performed CRISPR-Cas9­mediated editing at the Avpr1a gene via pronuclear microinjections in Syrian hamsters (Mesocricetus auratus), a species used extensively in behavioral neuroendocrinology because they produce a rich suite of social behaviors. Using this germ-line gene-editing approach, we generated a stable line of hamsters with a frame-shift mutation in the Avpr1a gene resulting in the null expression of functional Avpr1as. Avpr1a knockout (KO) hamsters exhibited a complete lack of Avpr1a-specific autoradiographic binding throughout the brain, behavioral insensitivity to centrally administered AVP, and no pressor response to a peripherally injected Avpr1a-specific agonist, thus confirming the absence of functional Avpr1as in the brain and periphery. Contradictory to expectations, Avpr1a KO hamsters exhibited substantially higher levels of conspecific social communication (i.e., odor-stimulated flank marking) than their wild-type (WT) littermates. Furthermore, sex differences in aggression were absent, as both male and female KOs exhibited more aggression toward same-sex conspecifics than did their WT littermates. Taken together, these data emphasize the importance of comparative studies employing gene-editing approaches and suggest the startling possibility that Avpr1a-specific modulation of the social behavior neural network may be more inhibitory than permissive.


Assuntos
Sistemas CRISPR-Cas , Receptores de Vasopressinas , Agressão/fisiologia , Animais , Arginina/metabolismo , Arginina Vasopressina/genética , Cricetinae , Mesocricetus , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Comportamento Social
2.
Front Neuroendocrinol ; 51: 14-24, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29054552

RESUMO

Oxytocin (OT) and arginine-vasopressin (AVP) act in the brain to regulate social cognition/social behavior and in the periphery to influence a variety of physiological processes. Although the chemical structures of OT and AVP as well as their receptors are quite similar, OT and AVP can have distinct or even opposing actions. Here, we review the increasing body of evidence that exogenously administered and endogenously released OT and AVP can activate each other's canonical receptors (i.e., cross-talk) and examine the possibility that receptor cross-talk following the synaptic and non-synaptic release of OT and AVP contributes to their distinct roles in the brain and periphery. Understanding the consequences of cross-talk between OT and AVP receptors will be important in identifying how these peptides control social cognition and behavior and for the development of drugs to treat a variety of psychiatric disorders.


Assuntos
Arginina Vasopressina/metabolismo , Transtornos Mentais/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/metabolismo , Comportamento Social , Animais , Arginina Vasopressina/farmacologia , Feminino , Humanos , Masculino , Transtornos Mentais/tratamento farmacológico , Ocitocina/farmacologia , Receptores de Ocitocina/efeitos dos fármacos , Receptores de Vasopressinas/efeitos dos fármacos
3.
Horm Behav ; 116: 104578, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31449813

RESUMO

It is widely held that social isolation produces higher rates of mortality and morbidity and has deleterious effects on an individual's sociality. Relatedly, it is widely observed that socially isolated adult rodents display significantly higher levels of aggression when placed in a social situation than do their conspecifics living in social groups. In the following study, we investigated the effects of social isolation on several neurochemical signals that play key roles in the regulation of social behavior in adults. More specifically, we examined the effects of social isolation on vasopressin (AVP) V1a, oxytocin (OT) and serotonin (5-HT)1a receptor binding within the neural circuit controlling social behavior. Male and female Syrian hamsters were housed individually or with two other hamsters for four weeks and were then tested with a same-sex nonaggressive intruder in a neutral arena for 5 min. Social isolation significantly increased aggression in both males and females and altered receptor binding in several brain regions in a sex-dependent manner. For example, V1a receptor binding was greater in socially isolated males in the anterior hypothalamus than it was in any other group. Taken together, these data provide substantial new support for the proposition that the social environment can have a significant impact on the structural and neurochemical mechanisms regulating social behavior and that the amount and type of social interactions can produce differential effects on the circuit regulating social behavior in a sex-dependent manner.


Assuntos
Agressão/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/metabolismo , Isolamento Social , Animais , Arginina Vasopressina/metabolismo , Cricetinae , Feminino , Hipotálamo Anterior/metabolismo , Masculino , Mesocricetus , Ocitocina/metabolismo , Ligação Proteica , Serotonina/metabolismo , Caracteres Sexuais , Comportamento Social , Isolamento Social/psicologia
4.
Proc Natl Acad Sci U S A ; 113(46): 13233-13238, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807133

RESUMO

There are profound sex differences in the incidence of many psychiatric disorders. Although these disorders are frequently linked to social stress and to deficits in social engagement, little is known about sex differences in the neural mechanisms that underlie these phenomena. Phenotypes characterized by dominance, competitive aggression, and active coping strategies appear to be more resilient to psychiatric disorders such as posttraumatic stress disorder (PTSD) compared with those characterized by subordinate status and the lack of aggressiveness. Here, we report that serotonin (5-HT) and arginine-vasopressin (AVP) act in opposite ways in the hypothalamus to regulate dominance and aggression in females and males. Hypothalamic injection of a 5-HT1a agonist stimulated aggression in female hamsters and inhibited aggression in males, whereas injection of AVP inhibited aggression in females and stimulated aggression in males. Striking sex differences were also identified in the neural mechanisms regulating dominance. Acquisition of dominance was associated with activation of 5-HT neurons within the dorsal raphe in females and activation of hypothalamic AVP neurons in males. These data strongly indicate that there are fundamental sex differences in the neural regulation of dominance and aggression. Further, because systemically administered fluoxetine increased aggression in females and substantially reduced aggression in males, there may be substantial gender differences in the clinical efficacy of commonly prescribed 5-HT-active drugs such as selective 5-HT reuptake inhibitors. These data suggest that the treatment of psychiatric disorders such as PTSD may be more effective with the use of 5-HT-targeted drugs in females and AVP-targeted drugs in males.


Assuntos
Agressão/fisiologia , Arginina Vasopressina/fisiologia , Hipotálamo/fisiologia , Serotonina/fisiologia , Predomínio Social , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Agressão/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Fluoxetina/farmacologia , Hipotálamo/efeitos dos fármacos , Masculino , Mesocricetus , Agonistas do Receptor de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Caracteres Sexuais
5.
Front Neuroendocrinol ; 44: 35-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894927

RESUMO

Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Transdução de Sinais/fisiologia , Núcleo Supraquiasmático/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Humanos
6.
Am J Primatol ; 80(10): e22875, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29797339

RESUMO

Oxytocin (OT) and arginine-vasopressin (AVP) are involved in the regulation of complex social behaviors across a wide range of taxa. Despite this, little is known about the neuroanatomy of the OT and AVP systems in most non-human primates, and less in humans. The effects of OT and AVP on social behavior, including aggression, mating, and parental behavior, may be mediated primarily by the extensive connections of OT- and AVP-producing neurons located in the hypothalamus with the basal forebrain and amygdala, as well as with the hypothalamus itself. However, OT and AVP also influence social cognition, including effects on social recognition, cooperation, communication, and in-group altruism, which suggests connectivity with cortical structures. While OT and AVP V1a receptors have been demonstrated in the cortex of rodents and primates, and intranasal administration of OT and AVP has been shown to modulate cortical activity, there is to date little evidence that OT-and AVP-containing neurons project into the cortex. Here, we demonstrate the existence of OT- and AVP-containing fibers in cortical regions relevant to social cognition using immunohistochemistry in humans, chimpanzees, and rhesus macaques. OT-immunoreactive fibers were found in the straight gyrus of the orbitofrontal cortex as well as the anterior cingulate gyrus in human and chimpanzee brains, while no OT-immunoreactive fibers were found in macaque cortex. AVP-immunoreactive fibers were observed in the anterior cingulate gyrus in all species, as well as in the insular cortex in humans, and in a more restricted distribution in chimpanzees. This is the first report of OT and AVP fibers in the cortex in human and non-human primates. Our findings provide a potential mechanism by which OT and AVP might exert effects on brain regions far from their production site in the hypothalamus, as well as potential species differences in the behavioral functions of these target regions.


Assuntos
Arginina Vasopressina/metabolismo , Córtex Cerebral/metabolismo , Macaca mulatta/metabolismo , Ocitocina/metabolismo , Adulto , Animais , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Pan troglodytes/metabolismo , Comportamento Social
7.
Front Neuroendocrinol ; 36: 49-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25102443

RESUMO

Arginine-vasotocin (AVT)/arginine vasopressin (AVP) are members of the AVP/oxytocin (OT) superfamily of peptides that are involved in the regulation of social behavior, social cognition and emotion. Comparative studies have revealed that AVT/AVP and their receptors are found throughout the "social behavior neural network (SBNN)" and display the properties expected from a signaling system that controls social behavior (i.e., species, sex and individual differences and modulation by gonadal hormones and social factors). Neurochemical signaling within the SBNN likely involves a complex combination of synaptic mechanisms that co-release multiple chemical signals (e.g., classical neurotransmitters and AVT/AVP as well as other peptides) and non-synaptic mechanisms (i.e., volume transmission). Crosstalk between AVP/OT peptides and receptors within the SBNN is likely. A better understanding of the functional properties of neurochemical signaling in the SBNN will allow for a more refined examination of the relationships between this peptide system and species, sex and individual differences in sociality.


Assuntos
Encéfalo/metabolismo , Rede Nervosa/metabolismo , Comportamento Social , Vasopressinas/metabolismo , Vasotocina/metabolismo , Animais , Humanos , Individualidade , Caracteres Sexuais , Transdução de Sinais/fisiologia , Especificidade da Espécie
8.
Horm Behav ; 81: 20-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26975586

RESUMO

Social recognition is a fundamental requirement for all forms of social relationships. A majority of studies investigating the neural mechanisms underlying social recognition in rodents have investigated relatively neutral social stimuli such as juveniles or ovariectomized females over short time intervals (e.g., 2h). The present study developed a new testing model to study social recognition among adult males using a potent social stimulus. Flank gland odors are used extensively in social communication in Syrian hamsters and convey important information such as dominance status. We found that the recognition of flank gland odors after a 3min exposure lasted for at least 24h, substantially longer than the recognition of other social cues in rats and mice. Intracerebroventricular injections of OT and AVP prolonged the recognition of flank gland odor for up to 48h. Selective OTR but not V1aR agonists, mimicked these enhancing effects of OT and AVP. Similarly, selective OTR but not V1aR antagonists blocked recognition of the odors after 20min. In contrast, the recognition of non-social stimuli was not blocked by either the OTR or the V1aR antagonists. Our findings suggest both OT and AVP enhance social recognition via acting on OTRs and not V1aRs and that the recognition enhancing effects of OT and AVP are limited to social stimuli.


Assuntos
Arginina Vasopressina/farmacologia , Comportamento Animal/efeitos dos fármacos , Ocitocina/farmacologia , Receptores de Ocitocina/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Comportamento Social , Animais , Arginina Vasopressina/fisiologia , Cricetinae , Feminino , Masculino , Mesocricetus , Ocitocina/fisiologia , Receptores de Ocitocina/agonistas , Receptores de Vasopressinas/agonistas , Receptores de Vasopressinas/metabolismo
9.
Eur J Neurosci ; 42(2): 1830-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25865743

RESUMO

The suprachiasmatic nucleus (SCN) contains a circadian clock that generates endogenous rhythmicity and entrains that rhythmicity with the day-night cycle. The neurochemical events that transduce photic input within the SCN and mediate entrainment by resetting the molecular clock have yet to be defined. Because GABA is contained in nearly all SCN neurons we tested the hypothesis that GABA serves as this signal in studies employing Syrian hamsters (Mesocricetus auratus). Activation of GABAA receptors was found to be necessary and sufficient for light to induce phase delays of the clock. Remarkably, the sustained activation of GABAA receptors for more than three consecutive hours was necessary to phase-delay the clock. The duration of GABAA receptor activation required to induce phase delays would not have been predicted by either the prevalent theory of circadian entrainment or by expectations regarding the duration of ionotropic receptor activation necessary to produce functional responses. Taken together, these data identify a novel neurochemical mechanism essential for phase-delaying the 'master' circadian clock within the SCN as well as identifying an unprecedented action of an amino acid neurotransmitter involving the sustained activation of ionotropic receptors.


Assuntos
Relógios Circadianos/fisiologia , Luz , Receptores de GABA-A/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Bicuculina/farmacologia , Relógios Circadianos/efeitos dos fármacos , Cricetinae , Relação Dose-Resposta a Droga , GABAérgicos/farmacologia , Masculino , Mesocricetus , Microinjeções , Muscimol/farmacologia , Tempo de Reação/efeitos dos fármacos , Núcleo Supraquiasmático/efeitos dos fármacos , Fatores de Tempo
10.
Physiol Behav ; 273: 114410, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977252

RESUMO

Social stress plays an important role in the etiology of many neuropsychiatric disorders and can lead to a variety of behavioral deficits such as social withdrawal. One way that social stress may contribute to psychiatric disorders is by reducing social motivation and the rewarding properties of social interactions. We investigated the impact of social stress on social reward in the context of winning versus losing agonistic encounters in Syrian hamsters (Mesocricetus auratus). First, we tested the hypothesis that social stress resulting from either stable low, or subordinate, social status or from social defeat reduces the rewarding properties of social interactions. Using an Operant Social Preference (OSP) task to measure social reward/motivation, we found that both subordinate and socially defeated males made significantly fewer entries into chambers containing novel, same-sex conspecifics compared to males who were dominant (i.e., stably won the agonistic encounters). In females, however, there were no differences in social entries between winners and losers. In a second experiment, we found more activation of the mesolimbic dopamine system (MDS) as assessed with cFos immunohistochemistry in the lateral ventral tegmental area (lVTA) and the nucleus accumbens (NAc) shell of male winners compared to losers. In females, however, there were no differences in activation in the lVTA between winners and losers. Surprisingly, however, winning females displayed significantly more activation in the NAc shell as compared to losing females, despite the lack of behavioral differences. Thus, behavioral and histological data suggest that there are sex differences in the impact of social status on social reward and associated mesolimbic activation.


Assuntos
Caracteres Sexuais , Status Social , Cricetinae , Animais , Masculino , Feminino , Humanos , Recompensa , Mesocricetus , Núcleo Accumbens/fisiologia , Área Tegmentar Ventral/fisiologia
11.
Behav Brain Res ; 462: 114881, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38272188

RESUMO

It has been hypothesized that oxytocin increases the salience of social stimuli, whether the valence is positive or negative, through its interactions with the ventral tegmental area (VTA). Indeed, oxytocin neurons project to the VTA and activate dopamine neurons that are necessary for social experiences with positive valence. Surprisingly, though, there has not been an investigation of the role of oxytocin in the VTA in mediating social experiences with negative valence (e.g., social stress). Given that there are sex differences in how oxytocin regulates the salience of positively-valenced social interactions, we hypothesized that oxytocin acting in the VTA also alters the salience of social stress in a sex-dependent manner. To test this, female and male Syrian hamsters were site-specifically infused with either saline, oxytocin (9 µM), or oxytocin receptor antagonist (90 µM) into the VTA. Subjects were then exposed to either no defeat or a single, 15 min defeat by one RA. The day following social defeat, subjects underwent a 5 min social avoidance test. There was an interaction between sex and drug treatment, such that the oxytocin antagonist increased social avoidance compared to saline treatment in socially stressed females, while oxytocin decreased social avoidance compared to saline treatment in socially stressed males. Contrary to expectations, these results suggest that oxytocin signaling generally acts to decrease social avoidance, regardless of sex. These sex differences in the efficacy of oxytocin and oxytocin receptor antagonists to alter negatively-valenced social stimuli, however, should be considered when guiding pharmacotherapies for disorders involving social deficits.


Assuntos
Ocitocina , Área Tegmentar Ventral , Cricetinae , Animais , Feminino , Masculino , Humanos , Ocitocina/farmacologia , Ocitocina/fisiologia , Receptores de Ocitocina , Comportamento Social , Mesocricetus , Antagonistas de Hormônios/farmacologia , Estresse Psicológico , Neurônios Dopaminérgicos
12.
Eur J Neurosci ; 38(2): 2308-18, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23607682

RESUMO

Nearly all species engage in a variety of intraspecific social interactions, and there is evidence that these interactions are rewarding. Less is known, however, about the factors that influence social reward. Using the conditioned place preference paradigm, we tested whether social interactions are rewarding for male Syrian hamsters. We also tested whether social stimuli increase neural activation in the ventral tegmental area (VTA), a component of the mesolimbic reward system, and how individual differences in social behavior and experience influence neural activation. In the present study, we found that hamsters developed a conditioned place preference for social interactions, but the effects were significantly stronger in dominant animals compared with subordinates. The number of Fos-immunoreactive cells in the VTA was significantly higher in hamsters that had engaged in a direct social encounter compared with hamsters exposed to a caged stimulus hamster or controls. Interestingly, socially experienced males had more Fos-immunoreactive cells in the VTA than socially naive males after exposure to a social stimulus. Surprisingly, the amount of Fos immunoreactivity in the VTA induced by a social stimulus was correlated with the amount of aggressive/dominance behaviors that had been observed during interactions that had occurred 2 months earlier. Our results indicate that social interactions between males are rewarding, and that social dominance increases the reward value. Social interactions stimulate the mesolimbic reward system, and social experience enhances its response to novel social stimuli and may produce long-term changes in the neural mechanisms that mediate the maintenance of dominance over long periods of time.


Assuntos
Agressão/fisiologia , Comunicação , Neurônios/metabolismo , Recompensa , Predomínio Social , Área Tegmentar Ventral/fisiologia , Animais , Condicionamento Psicológico , Masculino , Mesocricetus , Proteínas Proto-Oncogênicas c-fos/metabolismo
13.
Sci Adv ; 9(22): eadf4950, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256960

RESUMO

A major issue in neuroscience is the poor translatability of research results from preclinical studies in animals to clinical outcomes. Comparative neuroscience can overcome this barrier by studying multiple species to differentiate between species-specific and general mechanisms of neural circuit functioning. Targeted manipulation of neural circuits often depends on genetic dissection, and use of this technique has been restricted to only a few model species, limiting its application in comparative research. However, ongoing advances in genomics make genetic dissection attainable in a growing number of species. To demonstrate the potential of comparative gene editing approaches, we developed a viral-mediated CRISPR/Cas9 strategy that is predicted to target the oxytocin receptor (Oxtr) gene in >80 rodent species. This strategy specifically reduced OXTR levels in all evaluated species (n = 6) without causing gross neuronal toxicity. Thus, we show that CRISPR/Cas9-based tools can function in multiple species simultaneously. Thereby, we hope to encourage comparative gene editing and improve the translatability of neuroscientific research.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Edição de Genes/métodos , Receptores de Ocitocina/genética , Ocitocina/genética
14.
Horm Behav ; 61(3): 283-92, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22079778

RESUMO

Neuropeptides in the arginine vasotocin/arginine vasopressin (AVT/AVP) family play a major role in the regulation of social behavior by their actions in the brain. In mammals, AVP is found within a circuit of recriprocally connected limbic structures that form the social behavior neural network. This review examines the role played by AVP within this network in controlling social processes that are critical for the formation and maintenance of social relationships: social recognition, social communication and aggression. Studies in a number of mammalian species indicate that AVP and AVP V1a receptors are ideally suited to regulate the expression of social processes because of their plasticity in response to factors that influence social behavior. The pattern of AVP innervation and V1a receptors across the social behavior neural network may determine the potential range and intensity of social responses that individuals display in different social situations. Although fundamental information on how social behavior is wired in the brain is still lacking, it is clear that different social behaviors can be influenced by the actions of AVP in the same region of the network and that AVP can act within multiple regions of this network to regulate the expression of individual social behaviors. The existing data suggest that AVP can influence social behavior by modulating the interpretation of sensory information, by influencing decision making and by triggering complex motor outputs. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.


Assuntos
Agressão/fisiologia , Comunicação , Rede Nervosa/fisiologia , Reconhecimento Psicológico/fisiologia , Comportamento Social , Vasopressinas/fisiologia , Animais , Encéfalo/fisiologia , Química Encefálica/fisiologia , Humanos , Receptores de Vasopressinas/fisiologia
15.
Physiol Behav ; 252: 113828, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500727

RESUMO

A reduction in the rewarding properties of social interactions is frequently a key contributor to neuropsychiatric disorders. Although much remains to be learned about the neural mechanisms governing social reward, numerous studies have found that oxytocin can enhance the salience of rewarding social interactions. As a result, oxytocin has been suggested as a pharmacotherapy for disorders characterized by a dampening of social motivation. However, exogenous oxytocin does not cross the blood-brain barrier effectively, which has led to the investigation of alternative approaches to induce central oxytocin release, such as pharmaceuticals targeting melanocortins. Although oxytocin treatment is widely viewed to increase social reward, there is also recent evidence that high concentrations of oxytocin can decrease social reward. In the present study we tested the hypothesis that alpha-melanocyte-stimulating hormone (αMSH) influences the rewarding properties of social interactions by acting on oxytocin receptors. Male and female Syrian hamsters were given intracerebroventricular infusions of saline, αMSH, or a cocktail containing αMSH and an oxytocin receptor antagonist during social conditioning with a same-sex hamster and then tested for a conditioned place preference. αMSH decreased preference for the socially-paired chamber compared to saline treatment, and administration of the oxytocin antagonist concurrent with αMSH administration returned subjects' preference to control levels. Importantly, αMSH treatments did not affect any measures of body composition or the specific social behaviors displayed during conditioning. These data suggest that melanocortin-targeting drugs should be administered carefully to avoid the possibility of decreasing the rewarding properties of social interactions.


Assuntos
Receptores de Ocitocina , Interação Social , alfa-MSH , Animais , Cricetinae , Feminino , Humanos , Masculino , Mesocricetus , Ocitocina/farmacologia , Receptores de Ocitocina/metabolismo , Recompensa , Comportamento Social , Interação Social/efeitos dos fármacos , alfa-MSH/farmacologia
16.
Pharmacol Biochem Behav ; 214: 173353, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35150728

RESUMO

Most studies investigating the effects of acute administration of selective serotonin reuptake inhibitors (SSRI) on responses to social stress have been conducted with males. This is despite the fact that SSRIs remain the primary pharmacotherapy for social stress-related disorders for both sexes and that the prevalence of these disorders is twofold higher in women than in men. To determine whether acute treatment with the SSRI, fluoxetine, alters behavioral responses to social defeat stress in a sex- or social stress-dependent manner, male and female Syrian hamsters were subjected to one of three social defeat conditions: no defeat (placed into an empty resident aggressor (RA) cage), a single defeat by one RA for 15 min, or three consecutive defeats using different RAs for 5 min each. The day following social defeat, subjects were infused with either vehicle or fluoxetine (20 mg/kg, I.P.) 2 h prior to a 5 min social avoidance test. Overall, we found that fluoxetine increased social vigilance regardless of sex or defeat condition. We also found that fluoxetine affected social avoidance in a sex by stress intensity interaction, such that fluoxetine increased avoidance in no defeat males and in males defeated once but significantly increased avoidance in females only after three defeats. These data suggest that treatment with an SSRI could initially exacerbate the effects of social stress in both sexes. These data also emphasize the importance of including sex as a biological variable when investigating the efficacy of pharmacotherapy for stress-related disorders.


Assuntos
Fluoxetina , Comportamento Social , Animais , Comportamento Animal , Cricetinae , Feminino , Fluoxetina/farmacologia , Humanos , Masculino , Mesocricetus , Medição de Risco , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Psicológico/tratamento farmacológico
17.
Pharmacol Biochem Behav ; 215: 173362, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219757

RESUMO

Social subordination increases risk for psychiatric disorders, while dominance increases resilience to these disorders. Fluoxetine, a selective serotonin (5HT) reuptake inhibitor whose actions are mediated in part by the 5HT1A receptor (5HT1AR), has sex- and social status-specific effects on socioemotional behavior and aggressive behavior. However, the impact of social status on these sex-specific effects remains unclear. The current study evaluated the impact of acute fluoxetine treatment and social status on dominance-related behaviors in female and male hamsters, and the impact of chronic fluoxetine treatment on socioemotional behavior and 5HT1AR binding potential (5HT1ARBP) in female rhesus macaques. We hypothesized that sex differences in the effects of fluoxetine on aggression in hamsters would be diminished in dominant and enhanced in subordinate males and that aggression in female hamsters would be enhanced in dominants and diminished in subordinates. In female rhesus macaques, we hypothesized that chronic fluoxetine would alter socioemotional behaviors and site-specific 5HT1ARBP in a status-dependent manner. Male (n = 46) and female (n = 56) hamsters were paired with conspecifics for three days to establish social rank. Hamsters received a single dose of 20 mg/kg fluoxetine or vehicle two-hours prior to a test with a non-aggressive intruder. Female rhesus monkeys (n = 14) housed were administered fluoxetine (2.8 mg/kg/day) or vehicle injections chronically for 14-days, separated by a three-week washout period. On Day 15, positron emission tomography neuroimaging for 5HT1ARBP was conducted. Fluoxetine treatment decreased aggression in subordinate female monkeys and subordinate female hamsters but not in dominant females of either species. Fluoxetine decreased aggression in dominant but not in subordinate male hamsters. Fluoxetine also reduced and increased prefrontal 5HT1ARBP in dominant and subordinate females, respectively. Taken together, these results provide cross-species evidence that social status and sex impact how increased 5HT modulates agonistic behavior.


Assuntos
Fluoxetina , Status Social , Agressão , Animais , Cricetinae , Feminino , Fluoxetina/farmacologia , Humanos , Macaca mulatta , Masculino , Mesocricetus
18.
Biol Psychiatry ; 89(9): 929-938, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33487439

RESUMO

BACKGROUND: Estrogen increases dramatically during pregnancy but quickly drops below prepregnancy levels at birth and remains suppressed during the postpartum period. Clinical and rodent work suggests that this postpartum drop in estrogen results in an estrogen withdrawal state that is related to changes in affect, mood, and behavior. How estrogen withdrawal affects oxytocin (OT) neurocircuitry has not been examined. METHODS: We used a hormone-simulated pseudopregnancy followed by estrogen withdrawal in Syrian hamsters, a first for this species. Ovariectomized females were given daily injections to approximate hormone levels during gestation and then withdrawn from estrogen to simulate postpartum estrogen withdrawal. These hamsters were tested for behavioral assays of anxiety and anhedonia during estrogen withdrawal. Neuroplasticity in OT-producing neurons in the paraventricular nucleus of the hypothalamus and its efferent targets was measured. RESULTS: Estrogen-withdrawn females had increased anxiety-like behaviors in the elevated plus maze and open field tests but did not differ from control females in sucrose preference. Furthermore, estrogen-withdrawn females had more OT-immunoreactive cells and OT messenger RNA in the paraventricular nucleus of the hypothalamus and an increase in OT receptor density in the dorsal raphe nucleus. Finally, blocking OT receptors in the dorsal raphe nucleus during estrogen withdrawal prevented the high-anxiety behavioral phenotype in estrogen-withdrawn females. CONCLUSIONS: Estrogen withdrawal induces OT neuroplasticity in the paraventricular nucleus of the hypothalamus and dorsal raphe nucleus to increase anxiety-like behavior during the postpartum period. More broadly, these experiments suggest Syrian hamsters as a novel organism in which to model the effects of postpartum estrogen withdrawal on the brain and anxiety-like behavior.


Assuntos
Núcleo Dorsal da Rafe , Ocitocina , Ansiedade , Estrogênios , Feminino , Humanos , Hipotálamo , Núcleo Hipotalâmico Paraventricular , Período Pós-Parto , Gravidez
19.
J Neuroendocrinol ; 32(7): e12882, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32662552

RESUMO

Oxytocin (OT) and arginine vasopressin (AVP), as well as synthetic ligands targeting their receptors (OTR, V1aR), are used in a wide variety of research contexts, although their pharmacological properties are determined in only a few species. Syrian hamsters (Mesocricetus auratus) have a long history of use as a behavioural and biomedical model for the study of OT and AVP and, more recently, hamsters have been used to investigate behavioural consequences of OT-mediated activation of V1aR. We aimed to determine the binding affinities of OT, AVP and the selective V1aR antagonist, Manning compound, for OTR and V1aR in hamster brains. We performed saturation binding assays to determine the Kd values for the selective OTR and V1aR radioligands, [125 I]ornithine vasotocin analogue and [125 I]linear vasopressin antagonist. We then performed competition binding assays to determine Ki values for OT, AVP and Manning compound at both the OTR and V1aR. We found that OT and AVP each had the highest affinity for their canonical receptors (OT-OTR Ki = 4.28 [95% confidence interval (CI) = 2.9-6.3] nmol L-1 ; AVP-V1ar Ki = 4.70 [95% CI = 1.5-14.1] nmol L-1 ) and had the lowest affinity for their non-canonical ligands (OT-V1aR = 495.2 [95% CI = 198.5-1276] nmol L-1 ; AVP-OTR Ki = 36.1 [95% CI = 12.4-97.0] nmol L-1 ). Manning compound had the highest affinity for the V1aR (MC-V1aR Ki = 6.87 [95% CI = 4.0-11.9] nmol L-1 ; MC-OTR Ki = 213.8 [95% CI = 117.3-392.7] nmol L-1 ), although Manning compound was not as selective for the V1aR in hamsters as has been reported for the receptor in rats. When comparing these data with previously published work, we found that the promiscuity of the V1aR in hamsters with respect to OT and AVP binding is more similar to the promiscuity of the human V1aR than to the rat V1aR receptor. Moreover, the selectivity of OT at hamster receptors is more similar to the selectivity of OT at human receptors than the selectivity of OT at rat receptors. These data highlight the importance of determining the pharmacological properties of behaviourally relevant compounds in diverse model species.


Assuntos
Arginina Vasopressina/análogos & derivados , Arginina Vasopressina/metabolismo , Encéfalo/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/metabolismo , Animais , Arginina Vasopressina/farmacocinética , Ligação Competitiva , Cricetinae , Humanos , Masculino , Mesocricetus , Ligação Proteica , Ratos , Receptores Acoplados a Proteínas G/metabolismo
20.
J Biol Rhythms ; 35(3): 275-286, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32406304

RESUMO

The suprachiasmatic nucleus (SCN) contains a pacemaker that generates circadian rhythms and entrains them with the 24-h light-dark cycle (LD). The SCN is composed of 16,000 to 20,000 heterogeneous neurons in bilaterally paired nuclei. γ-amino butyric acid (GABA) is the primary neurochemical signal within the SCN and plays a key role in regulating circadian function. While GABA is the primary inhibitory neurotransmitter in the brain, there is now evidence that GABA can also exert excitatory effects in the adult brain. Cation chloride cotransporters determine the effects of GABA on chloride equilibrium, thereby determining whether GABA produces hyperpolarizing or depolarizing actions following activation of GABAA receptors. The activity of Na-K-2Cl cotransporter1 (NKCC1), the most prevalent chloride influx cotransporter isoform in the brain, plays a critical role in determining whether GABA has depolarizing effects. In the present study, we tested the hypothesis that NKCC1 protein expression in the SCN is regulated by environmental lighting and displays daily and circadian changes in the intact circadian system of the Syrian hamster. In hamsters housed in constant light (LL), the overall NKCC1 immunoreactivity (NKCC1-ir) in the SCN was significantly greater than in hamsters housed in LD or constant darkness (DD), although NKCC1 protein levels in the SCN were not different between hamsters housed in LD and DD. In hamsters housed in LD cycles, no differences in NKCC1-ir within the SCN were observed over the 24-h cycle. NKCC1 protein in the SCN was found to vary significantly over the circadian cycle in hamsters housed in free-running conditions. Overall, NKCC1 protein was greater in the ventral SCN than in the dorsal SCN, although no significant differences were observed across lighting conditions or time of day in either subregion. These data support the hypothesis that NKCC1 protein expression can be regulated by environmental lighting and circadian mechanisms within the SCN.


Assuntos
Ritmo Circadiano/efeitos da radiação , Luz , Membro 2 da Família 12 de Carreador de Soluto/genética , Núcleo Supraquiasmático/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Ritmo Circadiano/fisiologia , Cricetinae , Meio Ambiente , Masculino , Mesocricetus , Neurônios/fisiologia , Neurônios/efeitos da radiação , Fotoperíodo , Núcleo Supraquiasmático/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA