Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Antimicrob Agents Chemother ; 60(8): 4991-5000, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27297477

RESUMO

The clinical development of antibiotics with a new mode of action combined with efficient pulmonary drug delivery is a priority against untreatable Pseudomonas aeruginosa lung infections. POL7001 is a macrocycle antibiotic belonging to the novel class of protein epitope mimetic (PEM) molecules with selective and potent activity against P. aeruginosa We investigated ventilator-associated pneumonia (VAP) and cystic fibrosis (CF) as indications of the clinical potential of POL7001 to treat P. aeruginosa pulmonary infections. MICs of POL7001 and comparators were measured for reference and clinical P. aeruginosa strains. The therapeutic efficacy of POL7001 given by pulmonary administration was evaluated in murine models of P. aeruginosa acute and chronic pneumonia. POL7001 showed potent in vitro activity against a large panel of P. aeruginosa isolates from CF patients, including multidrug-resistant (MDR) isolates with adaptive phenotypes such as mucoid or hypermutable phenotypes. The efficacy of POL7001 was demonstrated in both wild-type and CF mice. In addition to a reduced bacterial burden in the lung, POL7001-treated mice showed progressive body weight recovery and reduced levels of inflammatory markers, indicating an improvement in general condition. Pharmacokinetic studies indicated that POL7001 reached significant concentrations in the lung after pulmonary administration, with low systemic exposure. These results support the further evaluation of POL7001 as a novel therapeutic agent for the treatment of P. aeruginosa pulmonary infections.


Assuntos
Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Antibacterianos/farmacocinética , Fibrose Cística/microbiologia , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Pneumonia Associada à Ventilação Mecânica/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Infecções Respiratórias/microbiologia
2.
BMC Genomics ; 16: 1105, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26714629

RESUMO

BACKGROUND: Pseudomonas aeruginosa establishes life-long chronic airway infections in cystic fibrosis (CF) patients. As the disease progresses, P. aeruginosa pathoadaptive variants are distinguished from the initially acquired strain. However, the genetic basis and the biology of host-bacteria interactions leading to a persistent lifestyle of P. aeruginosa are not understood. As a model system to study long term and persistent CF infections, the P. aeruginosa RP73, isolated 16.9 years after the onset of airways colonization from a CF patient, was investigated. Comparisons with strains RP1, isolated at the onset of the colonization, and clonal RP45, isolated 7 years before RP73 were carried out to better characterize genomic evolution of P. aeruginosa in the context of CF pathogenicity. RESULTS: Virulence assessments in disease animal model, genome sequencing and comparative genomics analysis were performed for clinical RP73, RP45, RP1 and prototype strains. In murine model, RP73 showed lower lethality and a remarkable capability of long-term persistence in chronic airways infection when compared to other strains. Pathological analysis of murine lungs confirmed advanced chronic pulmonary disease, inflammation and mucus secretory cells hyperplasia. Genomic analysis predicted twelve genomic islands in the RP73 genome, some of which distinguished RP73 from other prototype strains and corresponded to regions of genome plasticity. Further, comparative genomic analyses with sequential RP isolates showed signatures of pathoadaptive mutations in virulence factors potentially linked to the development of chronic infections in CF. CONCLUSIONS: The genome plasticity of P. aeruginosa particularly in the RP73 strain strongly indicated that these alterations may form the genetic basis defining host-bacteria interactions leading to a persistent lifestyle in human lungs.


Assuntos
Fibrose Cística/microbiologia , Genoma Bacteriano/genética , Pseudomonas aeruginosa/fisiologia , Animais , Modelos Animais de Doenças , Genômica , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa/genética , Infecções Respiratórias/metabolismo , Infecções Respiratórias/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Microbiol Spectr ; 11(1): e0408322, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625583

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) modulators improve clinical outcomes with varied efficacies in patients with CF. However, the mutual effects of CFTR modulators and bacterial adaptation, together with antibiotic regimens, can influence clinical outcomes. We evaluated the effects of ivacaftor (IVA), lumacaftor (LUM), tezacaftor, elexacaftor, and a three-modulator combination of elexacaftor, tezacaftor, and ivacaftor (ETI), alone or combined with antibiotics, on sequential CF isolates. IVA and ETI showed direct antimicrobial activities against Staphylococcus aureus but not against Pseudomonas aeruginosa. Additive effects or synergies were observed between the CFTR modulators and antibiotics against both species, independently of adaptation to the CF lung. IVA and LUM were the most effective in potentiating antibiotic activity against S. aureus, while IVA and ETI enhanced mainly polymyxin activity against P. aeruginosa. Next, we evaluated the effect of P. aeruginosa pneumonia on the pharmacokinetics of IVA in mice. IVA and its metabolites in plasma, lung, and epithelial lining fluid were increased by P. aeruginosa infection. Thus, CFTR modulators can have direct antimicrobial properties and/or enhance antibiotic activity against initial and adapted S. aureus and P. aeruginosa isolates. Furthermore, bacterial infection impacts airway exposure to IVA, potentially affecting its efficacy. Our findings suggest optimizing host- and pathogen-directed therapies to improve efficacy for personalized treatment. IMPORTANCE CFTR modulators have been developed to correct and/or enhance CFTR activity in patients with specific cystic fibrosis (CF) genotypes. However, it is of great importance to identify potential off-targets of these novel therapies to understand how they affect lung physiology in CF. Since bacterial infections are one of the hallmarks of CF lung disease, the effects (if any) of CFTR modulators on bacteria could impact their efficacy. This work highlights a mutual interaction between CFTR modulators and opportunistic bacterial infections; in particular, it shows that (i) CFTR modulators have an antibacterial activity per se and influence antibiotic efficacy, and (ii) bacterial airway infections affect levels of CFTR modulators in the airways. These findings may help optimize host- and pathogen-directed drug regimens to improve the efficacy of personalized treatment.


Assuntos
Fibrose Cística , Infecções Estafilocócicas , Animais , Camundongos , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Staphylococcus aureus/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Mutação
4.
J Antimicrob Chemother ; 67(4): 962-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22294647

RESUMO

OBJECTIVES: Hypermutable strains of Pseudomonas aeruginosa frequently emerge during chronic airways infection in cystic fibrosis (CF) patients. While the increased accumulation of mutations by hypermutable strains determines a biological cost for the colonization of secondary environments, the mutator phenotypes might confer a selective advantage under antibiotic treatment in a CF airways environment. METHODS: To test this hypothesis, the reference strain PAO1 and clonal pairs of CF clinical hypermutable and wild-type P. aeruginosa strains belonging to different genotypes were subjected to competition experiments in vitro and in a mouse model of chronic infection. RESULTS: Both in vitro and in vivo, under antibiotic selection pressure, clinical hypermutable P. aeruginosa strains and the reference PAO1ΔmutS outcompeted their wild-type strains, promoting P. aeruginosa hypermutable strains in the airways colonization. This advantage for the hypermutable strain did not occur in the absence of antibiotic treatments. Severe histopathological lesions were detected during chronic murine airways infection after antibiotic pressure, indicating that the advantage of the hypermutable population in the lungs may contribute to disease progression. CONCLUSIONS: Overall, these results showed that P. aeruginosa hypermutability, previously associated with a biological cost, increases colonization potential under selection pressure in a context of CF chronic airways infection and can contribute to lung damage during long-term persistence.


Assuntos
Antibacterianos/administração & dosagem , Farmacorresistência Bacteriana , Mutação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Infecções Respiratórias/microbiologia , Animais , Antibacterianos/farmacologia , Carga Bacteriana , Doença Crônica , Fibrose Cística/complicações , Humanos , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa/crescimento & desenvolvimento , Análise de Sobrevida
5.
Stem Cells ; 29(10): 1559-71, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21809420

RESUMO

Murine neural stem cells (mNSCs), either naive or genetically modified to express supranormal levels of ß-galactocerebrosidase (GALC), were transplanted into the brain of Twitcher mice, a murine model of globoid cell leukodystrophy, a severe sphingolipidosis. Cells engrafted long-term into the host cytoarchitecture, producing functional GALC. Levels of enzyme activity in brain and spinal cord tissues were enhanced when GALC-overexpressing NSC were used. Enzymatic correction correlated with reduced tissue storage, decreased activation of astroglia and microglia, delayed onset of symptoms, and longer lifespan. Mechanisms underlying the therapeutic effect of mNSC included widespread enzyme distribution, cross-correction of host cells, anti-inflammatory activity, and neuroprotection. Similar cell engraftment and metabolic correction were reproduced using human NSC. Thus, NSC gene therapy rapidly reconstitutes sustained and long-lasting enzyme activity in central nervous system tissues. Combining this approach with treatments targeting the systemic disease associated with leukodystrophies may provide significant therapeutic benefit.


Assuntos
Encéfalo/enzimologia , Galactosilceramidase/metabolismo , Terapia Genética/métodos , Leucodistrofia de Células Globoides/terapia , Células-Tronco Neurais/transplante , Medula Espinal/enzimologia , Animais , Encéfalo/patologia , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , Galactosilceramidase/genética , Galactosilceramidase/uso terapêutico , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Leucodistrofia de Células Globoides/enzimologia , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Medula Espinal/patologia , Transplante de Células-Tronco , Transgenes
6.
Front Microbiol ; 11: 620819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510733

RESUMO

Chronic infection by Pseudomonas aeruginosa in cystic fibrosis (CF) patients is a major contributor to progressive lung damage and is poorly treated by available antibiotic therapy. An alternative approach to the development of additional antibiotic treatments is to identify complementary therapies which target bacterial virulence factors necessary for the establishment and/or maintenance of the chronic infection. The P. aeruginosa elastase (LasB) has been suggested as an attractive anti-virulence target due to its extracellular location, its harmful degradative effects on host tissues and the immune system, and the potential to inhibit its activity using small molecule inhibitors. However, while the relevance of LasB in acute P. aeruginosa infection has been demonstrated, it is still unclear whether this elastase might also play a role in the early phase of chronic lung colonization. By analyzing clinical P. aeruginosa clonal isolates from a CF patient, we found that the isolate RP45, collected in the early phase of persistence, produces large amounts of active LasB, while its clonal variant RP73, collected after years of colonization, does not produce it. When a mouse model of persistent pneumonia was used, deletion of the lasB gene in RP45 resulted in a significant reduction in mean bacterial numbers and incidence of chronic lung colonization at Day 7 post-challenge compared to those mice infected with wild-type (wt) RP45. Furthermore, deletion of lasB in strain RP45 also resulted in an increase in immunomodulators associated with innate and adaptive immune responses in infected animals. In contrast, deletion of the lasB gene in RP73 did not affect the establishment of chronic infection. Overall, these results indicate that LasB contributes to the adaptation of P. aeruginosa to a persistent lifestyle. In addition, these findings support pharmacological inhibition of LasB as a potentially useful therapeutic intervention for P. aeruginosa-infected CF patients prior to the establishment of a chronic infection.

7.
Front Immunol ; 9: 3021, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687303

RESUMO

High incidence, severity and increasing antibiotic resistance characterize Pseudomonas aeruginosa infections, highlighting the need for new therapeutic options. Vaccination strategies to prevent or limit P. aeruginosa infections represent a rational approach to positively impact the clinical outcome of risk patients; nevertheless this bacterium remains a challenging vaccine target. To identify novel vaccine candidates, we started from the genome sequence analysis of the P. aeruginosa reference strain PAO1 exploring the reverse vaccinology approach integrated with additional bioinformatic tools. The bioinformatic approaches resulted in the selection of 52 potential antigens. These vaccine candidates were conserved in P. aeruginosa genomes from different origin and among strains isolated longitudinally from cystic fibrosis patients. To assess the immune-protection of single or antigens combination against P. aeruginosa infection, a vaccination protocol was established in murine model of acute respiratory infection. Combinations of selected candidates, rather than single antigens, effectively controlled P. aeruginosa infection in the in vivo model of murine pneumonia. Five combinations were capable of significantly increase survival rate among challenged mice and all included PA5340, a hypothetical protein exclusively present in P. aeruginosa. PA5340 combined with PA3526-MotY gave the maximum protection. Both proteins were surface exposed by immunofluorescence and triggered a specific immune response. Combination of these two protein antigens could represent a potential vaccine to prevent P. aeruginosa infection.


Assuntos
Genoma Bacteriano , Genômica , Infecções por Pseudomonas/imunologia , Vacinas contra Pseudomonas/genética , Vacinas contra Pseudomonas/imunologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/imunologia , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Fibrose Cística/complicações , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Camundongos , Fases de Leitura Aberta , Infecções por Pseudomonas/etiologia , Infecções por Pseudomonas/mortalidade , Infecções por Pseudomonas/prevenção & controle , Vacinas contra Pseudomonas/administração & dosagem , Pseudomonas aeruginosa/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA