Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(16): 166601, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31075027

RESUMO

We study the nature of photoexcited charge carriers in CsPbBr_{3} nanocrystal thin films by ultrafast optical pump-THz probe spectroscopy. We observe a deviation from a pure Drude dispersion of the THz dielectric response that is ascribed to the polaronic nature of carriers; a transient blueshift of observed phonon frequencies is indicative of the coupling between photogenerated charges and stretching-bending modes of the deformed inorganic sublattice, as confirmed by DFT calculations.

2.
Proc Natl Acad Sci U S A ; 111(23): E2431-8, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24872450

RESUMO

In oxygenic photosynthetic eukaryotes, the hydroxylated carotenoid zeaxanthin is produced from preexisting violaxanthin upon exposure to excess light conditions. Zeaxanthin binding to components of the photosystem II (PSII) antenna system has been investigated thoroughly and shown to help in the dissipation of excess chlorophyll-excited states and scavenging of oxygen radicals. However, the functional consequences of the accumulation of the light-harvesting complex I (LHCI) proteins in the photosystem I (PSI) antenna have remained unclarified so far. In this work we investigated the effect of zeaxanthin binding on photoprotection of PSI-LHCI by comparing preparations isolated from wild-type Arabidopsis thaliana (i.e., with violaxanthin) and those isolated from the A. thaliana nonphotochemical quenching 2 mutant, in which violaxanthin is replaced by zeaxanthin. Time-resolved fluorescence measurements showed that zeaxanthin binding leads to a previously unrecognized quenching effect on PSI-LHCI fluorescence. The efficiency of energy transfer from the LHCI moiety of the complex to the PSI reaction center was down-regulated, and an enhanced PSI resistance to photoinhibition was observed both in vitro and in vivo. Thus, zeaxanthin was shown to be effective in inducing dissipative states in PSI, similar to its well-known effect on PSII. We propose that, upon acclimation to high light, PSI-LHCI changes its light-harvesting efficiency by a zeaxanthin-dependent quenching of the absorbed excitation energy, whereas in PSII the stoichiometry of LHC antenna proteins per reaction center is reduced directly.


Assuntos
Arabidopsis/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Xantofilas/metabolismo , Arabidopsis/genética , Clorofila/metabolismo , Fluorescência , Cinética , Luz , Complexos de Proteínas Captadores de Luz/genética , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Mutação , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Ligação Proteica , Fatores de Tempo , Zeaxantinas
3.
J Phys Chem Lett ; 9(6): 1340-1345, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29488385

RESUMO

Bacterial photosynthesis features robust and adaptable energy-harvesting processes in which light-harvesting proteins play a crucial role. The peripheral light-harvesting complex of the purple bacterium Allochromatium vinosum is particularly distinct, featuring a double peak structure in its B800 absorption band. Two hypotheses-not necessarily mutually exclusive-concerning the origin of this splitting have been proposed; either two distinct B800 bacteriochlorophyll site energies are involved, or an excitonic dimerization of bacteriochlorophylls within the B800 ring takes place. Through the use of two-dimensional electronic spectroscopy, we present unambiguous evidence that excitonic interaction shapes the split band. We further identify and characterize all of the energy transfer pathways within this complex by using a global kinetic fitting procedure. Our approach demonstrates how the combination of two-dimensional spectral resolution and self-consistent fitting allows for extraction of information on light-harvesting processes, which would otherwise be inaccessible due to signal congestion.

4.
Nat Chem ; 10(7): 780-786, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29785033

RESUMO

The idea that excitonic (electronic) coherences are of fundamental importance to natural photosynthesis gained popularity when slowly dephasing quantum beats (QBs) were observed in the two-dimensional electronic spectra of the Fenna-Matthews-Olson (FMO) complex at 77 K. These were assigned to superpositions of excitonic states, a controversial interpretation, as the strong chromophore-environment interactions in the complex suggest fast dephasing. Although it has been pointed out that vibrational motion produces similar spectral signatures, a concrete assignment of these oscillatory signals to distinct physical processes is still lacking. Here we revisit the coherence dynamics of the FMO complex using polarization-controlled two-dimensional electronic spectroscopy, supported by theoretical modelling. We show that the long-lived QBs are exclusively vibrational in origin, whereas the dephasing of the electronic coherences is completed within 240 fs even at 77 K. We further find that specific vibrational coherences are produced via vibronically coupled excited states. The presence of such states suggests that vibronic coupling is relevant for photosynthetic energy transfer.

5.
Sci Rep ; 7(1): 16319, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176710

RESUMO

Astaxanthin is a ketocarotenoid produced by photosynthetic microalgae. It is a pigment of high industrial interest in acquaculture, cosmetics, and nutraceutics due to its strong antioxidant power. Haematococcus pluvialis, a fresh-water microalga, accumulates high levels of astaxanthin upon oxidative stress, reaching values up to 5% per dry weight. H. pluvialis accumulates astaxanthin in oil droplets in the cytoplasm, while the chloroplast volume is reduced. In this work, we investigate the biochemical and spectroscopic properties of the H. pluvialis pigment binding complexes responsible for light harvesting and energy conversion. Our findings demonstrate that the main features of chlorophyll and carotenoid binding complexes previously reported for higher plants or Chlamydomonas reinhardtii are preserved under control conditions. Transition to astaxanthin rich cysts however leads to destabilization of the Photosystems. Surprisingly, astaxanthin was found to be bound to both Photosystem I and II, partially substituting ß-carotene, and thus demonstrating possible astaxanthin biosynthesis in the plastids or transport from the cytoplasm to the chloroplast. Astaxanthin binding to Photosystems does not however improve their photoprotection, but rather reduces the efficiency of excitation energy transfer to the reaction centers. We thus propose that astaxanthin binding partially destabilizes Photosystem I and II.


Assuntos
Clorófitas/metabolismo , Luz , Fotossíntese/fisiologia , Carotenoides/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Citoplasma/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Xantofilas/metabolismo , beta Caroteno/metabolismo
6.
Nat Plants ; 2: 16131, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27564313

RESUMO

Light-harvesting complexes (LHCs) are major constituents of the antenna systems in higher plant photosystems. Four Lhca subunits are tightly bound to the photosystem I (PSI) core complex, forming its outer antenna moiety called LHCI. The Arabidopsis thaliana mutant ΔLhca lacks all Lhca1-4 subunits and compensates for its decreased antenna size by binding LHCII trimers, the main constituent of the photosystem II antenna system, to PSI. In this work we have investigated the effect of LHCI/LHCII substitution by comparing the light harvesting and excitation energy transfer efficiency properties of PSI complexes isolated from ΔLhca mutants and from the wild type, as well as the consequences for plant growth. We show that the excitation energy transfer efficiency was not compromised by the substitution of LHCI with LHCII but a significant reduction in the absorption cross-section was observed. The absence of LHCI subunits in PSI thus significantly limits light harvesting, even on LHCII binding, inducing, as a consequence, a strong reduction in growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Transferência de Energia
7.
Nat Commun ; 5: 3586, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24710005

RESUMO

Excitonic solar cells, within which bound electron-hole pairs have a central role in energy harvesting, have represented a hot field of research over the last two decades due to the compelling prospect of low-cost solar energy. However, in such cells, exciton dissociation and charge collection occur with significant losses in energy, essentially due to poor charge screening. Organic-inorganic perovskites show promise for overcoming such limitations. Here, we use optical spectroscopy to estimate the exciton binding energy in the mixed-halide crystal to be in the range of 50 meV. We show that such a value is consistent with almost full ionization of the exciton population under photovoltaic cell operating conditions. However, increasing the total photoexcitation density, excitonic species become dominant, widening the perspective of this material for a host of optoelectronic applications.

8.
J Phys Chem Lett ; 4(3): 442-7, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26281738

RESUMO

There has been phenomenal effort synthesizing new low-band gap polymer hole-conductors which absorb into the near-infrared (NIR), leading to >10% efficient all-organic solar cells. However, organic light absorbers have relatively narrow bandwidths, making it challenging to obtain panchromatic absorption in a single organic semiconductor. Here, we demonstrate that (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b0]dithiophene)-alt-4,7-(2,1,3-benzothiadia-zole)] (PCPDTBT) can be "photo-sensitized" across the whole visible spectrum by "doping" with a visible absorbing dye, the (2,2,7,7-tetrakis(3-hexyl-5-(7-(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)-9,9-spirobifluorene) (spiro-TBT). Through a comprehensive sub-12 femtosecond-nanosecond spectroscopic study, we demonstrate that extremely efficient and fast energy transfer occurs from the photoexcited spiro-TBT to the PCPDTBT, and ultrafast charge injection happens when the system is interfaced with ZnO as a prototypal electron-acceptor compound. The visible photosensitization can be effectively exploited and gives panchromatic photoresponse in prototype polymer/oxide bilayer photovoltaic diodes. This concept can be successfully adopted for tuning and optimizing the light absorption and photoresponse in a broad range of polymeric and hybrid solar cells.

9.
Science ; 342(6156): 341-4, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24136964

RESUMO

Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

10.
ACS Nano ; 6(2): 1637-47, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22283644

RESUMO

Great control over size, shape and optical properties is now possible in colloidal Cd-based nanocrystals, which has paved the way for many fundamental studies and applications. One popular example of such class of nanocrystals is represented by CdSe(spherical core)/CdS(rod shell) nanorods. These can be nearly monodisperse in size and shape and have strong and stable photoluminescence that is tunable in the visible range (mainly by varying the size of the CdSe core). The corresponding Zn-based core/shell nanorods would be good candidates for tunable emission in the blue-UV region. However, while the synthesis of ZnS nanocrystals with elongated shapes has been demonstrated based on the oriented-attachment mechanism, elongated ZnS shells are difficult to fabricate because the more common cubic phase of ZnS has a highly symmetric crystal structure. We report here a procedure based on a sequence of two cation exchange reactions, namely, Cd(2+)⇒Cu(+) and then Cu(+)⇒Zn(2+), by which we transform colloidal CdSe(core)/CdS(shell) nanorods first into into Cu(2)Se/Cu(2)S nanorods, which are then converted into blue-UV fluorescent ZnSe(core)/ZnS(shell) nanorods. The procedure transfers the morphological and structural information of the initial Cd-based nanorods to the Zn-based nanorods. Therefore, the final nanoparticles are made by a ZnSe dot embedded in a rod-shaped shell of wurtzite ZnS. Since in the starting Cd-based nanorods the size of the CdSe core and the length of the CdS shell can be well controlled, the same holds for the final Zn-based rods. In the second step of the exchange reaction (Cu(+)⇒Zn(2+)), a large excess of Zn(2+) ions added over the Cu(+) ions present in the Cu(2)Se/Cu(2)S nanorods is the key requisite to obtain bright, band-edge emission (with quantum yields approaching 15%) with narrow line widths (approaching 75 meV). In these ZnSe/ZnS nanorods, photogenerated carriers appear to be more confined in the core region compared to their parent CdSe/CdS nanorods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA