Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 469(7330): 389-92, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21209615

RESUMO

The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.


Assuntos
Grafite/química , Cobre , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão e Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
2.
Proc Natl Acad Sci U S A ; 110(28): 11256-60, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798395

RESUMO

Bilayer graphene has been a subject of intense study in recent years. The interlayer registry between the layers can have dramatic effects on the electronic properties: for example, in the presence of a perpendicular electric field, a band gap appears in the electronic spectrum of so-called Bernal-stacked graphene [Oostinga JB, et al. (2007) Nature Materials 7:151-157]. This band gap is intimately tied to a structural spontaneous symmetry breaking in bilayer graphene, where one of the graphene layers shifts by an atomic spacing with respect to the other. This shift can happen in multiple directions, resulting in multiple stacking domains with soliton-like structural boundaries between them. Theorists have recently proposed that novel electronic states exist at these boundaries [Vaezi A, et al. (2013) arXiv:1301.1690; Zhang F, et al. (2013) arXiv:1301.4205], but very little is known about their structural properties. Here we use electron microscopy to measure with nanoscale and atomic resolution the widths, motion, and topological structure of soliton boundaries and related topological defects in bilayer graphene. We find that each soliton consists of an atomic-scale registry shift between the two graphene layers occurring over 6-11 nm. We infer the minimal energy barrier to interlayer translation and observe soliton motion during in situ heating above 1,000 °C. The abundance of these structures across a variety of samples, as well as their unusual properties, suggests that they will have substantial effects on the electronic and mechanical properties of bilayer graphene.

3.
Nano Lett ; 15(8): 5143-8, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26218170

RESUMO

We couple magnetic tweezer techniques with standard lithography methods to make magnetically actuated single-walled carbon nanotube (SWNT) devices. Parallel arrays of 4-10 µm-long SWNT cantilevers are patterned with one end anchored to the substrate and the other end attached to a micron-scale iron magnetic tag that is free to move in solution. Thermal fluctuations of this tag provide a direct measurement of the spring constant of the SWNT cantilevers, yielding values of 10(-7)-10(-8) N/m. This tag is also a handle for applying forces and torques using externally applied magnetic field gradients. These techniques provide a platform on which interaction forces between SWNTs and other objects such as biomolecules and cells can be measured in situ.

4.
Nano Lett ; 10(2): 562-6, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20038087

RESUMO

We investigate the optoelectronic response of a graphene single-bilayer interface junction using photocurrent (PC) microscopy. We measure the polarity and amplitude of the PC while varying the Fermi level by tuning a gate voltage. These measurements show that the generation of PC is by a photothermoelectric effect. The PC displays a factor of approximately 10 increase at the cryogenic temperature as compared to room temperature. Assuming the thermoelectric power has a linear dependence on the temperature, the inferred graphene thermal conductivity from temperature dependent measurements has a T(1.5) dependence below approximately 100 K, which agrees with recent theoretical predictions.

5.
Nano Lett ; 10(12): 4869-73, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21080681

RESUMO

We fabricated large arrays of suspended, single-layer graphene membrane resonators using chemical vapor deposition (CVD) growth followed by patterning and transfer. We measure the resonators using both optical and electrical actuation and detection techniques. We find that the resonators can be modeled as flat membranes under tension, and that clamping the membranes on all sides improves agreement with our model and reduces the variation in frequency between identical resonators. The resonance frequency is tunable with both electrostatic gate voltage and temperature, and quality factors improve dramatically with cooling, reaching values up to 9000 at 10 K. These measurements show that it is possible to produce large arrays of CVD-grown graphene resonators with reproducible properties and the same excellent electrical and mechanical properties previously reported for exfoliated graphene.

6.
J Appl Crystallogr ; 46(Pt 5): 1501-1507, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24068843

RESUMO

The overall signal-to-noise ratio per unit dose for X-ray diffraction data from protein crystals can be improved by reducing the mass and density of all material surrounding the crystals. This article demonstrates a path towards the practical ultimate in background reduction by use of atomically thin graphene sheets as a crystal mounting platform for protein crystals. The results show the potential for graphene in protein crystallography and other cases where X-ray scatter from the mounting material must be reduced and specimen dehydration prevented, such as in coherent X-ray diffraction imaging of microscopic objects.

7.
Science ; 342(6155): 224-7, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24115436

RESUMO

Structural rearrangements control a wide range of behavior in amorphous materials, and visualizing these atomic-scale rearrangements is critical for developing and refining models for how glasses bend, break, and melt. It is difficult, however, to directly image atomic motion in disordered solids. We demonstrate that using aberration-corrected transmission electron microscopy, we can excite and image atomic rearrangements in a two-dimensional silica glass-revealing a complex dance of elastic and plastic deformations, phase transitions, and their interplay. We identified the strain associated with individual ring rearrangements, observed the role of vacancies in shear deformation, and quantified fluctuations at a glass/liquid interface. These examples illustrate the wide-ranging and fundamental materials physics that can now be studied at atomic-resolution via transmission electron microscopy of two-dimensional glasses.

8.
Nano Lett ; 8(8): 2458-62, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18630972

RESUMO

We demonstrate that a monolayer graphene membrane is impermeable to standard gases including helium. By applying a pressure difference across the membrane, we measure both the elastic constants and the mass of a single layer of graphene. This pressurized graphene membrane is the world's thinnest balloon and provides a unique separation barrier between 2 distinct regions that is only one atom thick.


Assuntos
Grafite/química , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA