Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 134(3): 777-792, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33469696

RESUMO

KEY MESSAGE: A locus on chromosome 13, containing multiple TIR-NB-LRR genes and SNPs associated with M. javanica resistance, was identified using a combination of GWAS, resequencing, genetic mapping and expression profiling. Meloidogyne javanica, a root-knot nematode, is an important problem in soybean-growing areas, leading to severe yield losses. Some accessions have been identified carrying resistance loci to this nematode. In this study, a set of 317 soybean accessions was characterized for resistance to M. javanica. A genome-wide association study was performed using SNPs from genotyping-by-sequencing, and a region of 29.2 kb on chromosome 13 was identified. An analysis of haplotypes showed that SNPs were able to discriminate between susceptible and resistant accessions, with 25 accessions sharing the haplotype associated with resistance. Furthermore, five accessions that exhibited resistance without carrying this haplotype may carry different loci conferring resistance to M. javanica. We also conducted the screening of the SNPs in the USDA soybean germplasm, revealing that several soybean accessions previously reported as resistant to other nematodes also shared the resistance haplotype on chromosome 13. Two SNP-based TaqMan® assays were developed and validated in two panels of soybean cultivars and in biparental populations. In silico analysis of the region associated with resistance identified the occurrence of genes with structural similarity with classical major resistance genes (NBS-LRR genes). Specifically, several nonsynonymous SNPs were observed in Glyma.13g194800 and Glyma.13g194900. The expression profile of these candidate genes demonstrated that the two gene models were up-regulated in the resistance source PI 505,099 after nematode infection. Overall, the SNPs associated with resistance and the genes identified constitute an important tool for introgression of resistance to the root-knot nematode by marker-assisted selection in soybean breeding programs.


Assuntos
Cromossomos de Plantas/genética , Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Tylenchoidea/fisiologia , Animais , Resistência à Doença/imunologia , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Doenças das Plantas/parasitologia , Locos de Características Quantitativas , Glycine max/imunologia , Glycine max/parasitologia
2.
BMC Plant Biol ; 16: 94, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27095276

RESUMO

BACKGROUND: Drought is a widespread limiting factor in coffee plants. It affects plant development, fruit production, bean development and consequently beverage quality. Genetic diversity for drought tolerance exists within the coffee genus. However, the molecular mechanisms underlying the adaptation of coffee plants to drought are largely unknown. In this study, we compared the molecular responses to drought in two commercial cultivars (IAPAR59, drought-tolerant and Rubi, drought-susceptible) of Coffea arabica grown in the field under control (irrigation) and drought conditions using the pyrosequencing of RNA extracted from shoot apices and analysing the expression of 38 candidate genes. RESULTS: Pyrosequencing from shoot apices generated a total of 34.7 Mbp and 535,544 reads enabling the identification of 43,087 clusters (41,512 contigs and 1,575 singletons). These data included 17,719 clusters (16,238 contigs and 1,575 singletons) exclusively from 454 sequencing reads, along with 25,368 hybrid clusters assembled with 454 sequences. The comparison of DNA libraries identified new candidate genes (n = 20) presenting differential expression between IAPAR59 and Rubi and/or drought conditions. Their expression was monitored in plagiotropic buds, together with those of other (n = 18) candidates genes. Under drought conditions, up-regulated expression was observed in IAPAR59 but not in Rubi for CaSTK1 (protein kinase), CaSAMT1 (SAM-dependent methyltransferase), CaSLP1 (plant development) and CaMAS1 (ABA biosynthesis). Interestingly, the expression of lipid-transfer protein (nsLTP) genes was also highly up-regulated under drought conditions in IAPAR59. This may have been related to the thicker cuticle observed on the abaxial leaf surface in IAPAR59 compared to Rubi. CONCLUSIONS: The full transcriptome assembly of C. arabica, followed by functional annotation, enabled us to identify differentially expressed genes related to drought conditions. Using these data, candidate genes were selected and their differential expression profiles were confirmed by qPCR experiments in plagiotropic buds of IAPAR59 and Rubi under drought conditions. As regards the genes up-regulated under drought conditions, specifically in the drought-tolerant IAPAR59, several corresponded to orphan genes but also to genes coding proteins involved in signal transduction pathways, as well as ABA and lipid metabolism, for example. The identification of these genes should help advance our understanding of the genetic determinism of drought tolerance in coffee.


Assuntos
Adaptação Fisiológica/genética , Coffea/genética , Secas , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Brotos de Planta/genética , Coffea/classificação , Coffea/fisiologia , Café/genética , Café/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Ontologia Genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Brotos de Planta/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
3.
Plant Sci ; 221-222: 59-68, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24656336

RESUMO

Drought is one of the most challenging agricultural issues limiting sustainable sugarcane production and, in some cases, yield losses caused by drought are nearly 50%. DREB proteins play vital regulatory roles in abiotic stress responses in plants. The transcription factor DREB2A interacts with a cis-acting DRE sequence to activate the expression of downstream genes that are involved in drought-, salt- and heat-stress response in Arabidopsis thaliana. In the present study, we evaluated the effects of stress-inducible over-expression of AtDREB2A CA on gene expression, leaf water potential (ΨL), relative water content (RWC), sucrose content and gas exchanges of sugarcane plants submitted to a four-days water deficit treatment in a rhizotron-grown root system. The plants were also phenotyped by scanning the roots and measuring morphological parameters of the shoot. The stress-inducible expression of AtDREB2A CA in transgenic sugarcane led to the up-regulation of genes involved in plant response to drought stress. The transgenic plants maintained higher RWC and ΨL over 4 days after withholding water and had higher photosynthetic rates until the 3rd day of water-deficit. Induced expression of AtDREB2A CA in sugarcane increased sucrose levels and improved bud sprouting of the transgenic plants. Our results indicate that induced expression of AtDREB2A CA in sugarcane enhanced its drought tolerance without biomass penalty.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas , Saccharum/genética , Sacarose/metabolismo , Fatores de Transcrição/genética , Proteínas de Arabidopsis/metabolismo , Transpiração Vegetal , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Saccharum/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA