Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909424

RESUMO

We present the results of numerical simulation of magnetodielectric effect (MDE) in magnetorheological elastomers (MRE)-the change of effective permittivity of elastomer placed under the external magnetic field. The computer model of effect is based on an assumption about the displacement of magnetic particles inside the elastic matrix under the external magnetic field and the formation of chain-like structures. Such displacement of metallic particles between the planes of capacitor leads to the change of capacity, which can be considered as a change of effective permittivity of elastomer caused by magnetic field (magnetodielectric effect). In the literature, mainly the 2D approach is used to model similar effects. In this paper, we present a new approach of magnetorheological elastomers simulation-a 3D-model of the magnetodielectric effect with ability to simulate systems of 10 5 particles. Within the framework of the model, three types of particle size distributions were simulated, which gives an advantage over previously reported approaches. Lognormal size distribution was shown to give better qualitative match of the modeling and experimental results than monosized type. The developed model resulted in a good qualitative agreement with all experimental data obtained earlier for Fe-based elastomers. The proposed model is useful to study these novel functional materials, analyze the features of magnetodielectric effect and predict the optimal composition of magnetorheological elastomers for further profound experimental study.


Assuntos
Elastômeros , Fenômenos Eletromagnéticos , Campos Magnéticos , Modelos Teóricos , Algoritmos
2.
iScience ; 26(7): 107077, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485374

RESUMO

The polycrystalline SrFe12O19 samples deeply substituted up to at.67% by Al3+, Ga3+, In3+, Co3+, and Cr3+ cations with a high configurational mixing entropy were prepared by solid-phase synthesis. Phase purity and unit cell parameters were obtained from XRD and analyzed versus the average ionic radius of the iron sublattice. The crystallite size varied around ∼4.5 µm. A comprehensive study of the magnetization was realized in various fields and temperatures. The saturation magnetization was calculated using the Law of Approach to Saturation. The accompanying magnetic parameters were determined. The magnetic crystallographic anisotropy coefficient and the anisotropy field were calculated. All investigated magnetization curves turned out to be nonmonotonic. The magnetic ordering and freezing temperatures were extracted from the ZFC and FC curves. The average size of magnetic clusters varied around ∼350 nm. The high values of the configurational mixing entropy and the phenomenon of magnetic dilution were taken into account.

3.
Polymers (Basel) ; 14(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432934

RESUMO

Polymer-based multiferroics, combining magnetic and piezoelectric properties, are studied experimentally-from synthesis to multi-parameter characterization-in view of their prospects for fabricating biocompatible scaffolds. The main advantage of these systems is facile generation of mechanical deformations and electric signals in response to external magnetic fields. Herein, we address the composites based on PVDF-TrFE polymer matrices filled with a combination of piezoelectric (BaTiO3, BTO) and/or ferrimagnetic (Zn0.25Co0.75Fe2O4, ZCFO) particles. It is shown that the presence of BTO micron-size particles favors stripe-type structuring of the ZCFO filler and enhances the magnetoelectric response of the sample up to 18.6 mV/(cm∙Oe). Besides that, the admixing of BTO particles is crucial because the mechanical properties of the composite filled with only ZCFO is much less efficient in transforming magnetic excitations into the mechanical and electric responses. Attention is focused on the local surfacial mechanical properties since those, to a great extent, determine the fate of stem cells cultivated on these surfaces. The nano-indentation tests are accomplished with the aid of scanning probe microscopy technique. With their proven suitable mechanical properties, a high level of magnetoelectric conversion and also biocompatibility, the composites of the considered type are enticing as the materials for multiferroic-based polymer scaffolds.

4.
Nanomaterials (Basel) ; 11(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34361221

RESUMO

Magnetic oxides are promising materials for alternative health diagnoses and treatments. The aim of this work is to understand the dependence of the heating power with the nanoparticle (NP) mean size, for the manganite composition La0.75Sr0.25MnO3 (LSMO)-the one with maximum critical temperature for the whole La/Sr ratio of the series. We have prepared four different samples, each one annealed at different temperatures, in order to produce different mean NP sizes, ranging from 26 nm up to 106 nm. Magnetization measurements revealed a FC-ZFC irreversibility and from the coercive field as function of temperature we determined the blocking temperature. A phase diagram was delivered as a function of the NP mean size and, based on this, the heating mechanism understood. Small NPs (26 nm) is heated up within the paramagnetic range of temperature (T>Tc), and therefore provide low heating efficiency; while bigger NPs are heated up, from room temperature, within the magnetically blocked range of temperature (TT>TB), for intermediate mean diameter size of 37 nm, with maximum efficiency of heat transfer.

5.
Cancers (Basel) ; 12(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952299

RESUMO

Nanotechnologies involving physical methods of tumor destruction using functional oligonucleotides are promising for targeted cancer therapy. Our study presents magnetodynamic therapy for selective elimination of tumor cells in vivo using DNA aptamer-functionalized magnetic nanoparticles exposed to a low frequency alternating magnetic field. We developed an enhanced targeting approach of cancer cells with aptamers and arabinogalactan. Aptamers to fibronectin (AS-14) and heat shock cognate 71 kDa protein (AS-42) facilitated the delivery of the nanoparticles to Ehrlich carcinoma cells, and arabinogalactan (AG) promoted internalization through asialoglycoprotein receptors. Specific delivery of the aptamer-modified FeAG nanoparticles to the tumor site was confirmed by magnetic resonance imaging (MRI). After the following treatment with a low frequency alternating magnetic field, AS-FeAG caused cancer cell death in vitro and tumor reduction in vivo. Histological analyses showed mechanical disruption of tumor tissues, total necrosis, cell lysis, and disruption of the extracellular matrix. The enhanced targeted magnetic theranostics with the aptamer conjugated superparamagnetic ferroarabinogalactans opens up a new venue for making biocompatible contrasting agents for MRI imaging and performing non-invasive anti-cancer therapies with a deep penetrated magnetic field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA