Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Plant Cell ; 36(2): 404-426, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37804096

RESUMO

L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth. Mutation of the photorespiratory enzyme Ser-hydroxymethyltransferase 1 (SHMT1) in a PPSB-deficient background resumed primary root growth and induced a change in the plant metabolic pattern between roots and shoots. Grafting experiments demonstrated that metabolic changes in shoots were responsible for the changes in double mutant development. PPSB disruption led to a reduction in nitrogen (N) and sulfur (S) contents in shoots and a general transcriptional response to nutrient deficiency. Disruption of SHMT1 boosted the Gly flux out of the photorespiratory cycle, which increased the levels of the one-carbon (1C) metabolite 5,10-methylene-tetrahydrofolate and S-adenosylmethionine. Furthermore, disrupting SHMT1 reverted the transcriptional response to N and S deprivation and increased N and S contents in shoots of PPSB-deficient lines. Our work provides genetic evidence of the biological relevance of the Ser-Gly-1C metabolic network in N and S metabolism and in interorgan metabolic homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Serina/metabolismo , Glicina/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Arabidopsis/metabolismo , Redes e Vias Metabólicas/genética , Enxofre/metabolismo , Desenvolvimento Vegetal
2.
Cell Mol Biol Lett ; 29(1): 15, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229033

RESUMO

BACKGROUND: The eukaryotic translation initiation protein eIF5A is a highly conserved and essential factor that plays a critical role in different physiological and pathological processes including stress response and cancer. Different proteomic studies suggest that eIF5A may be a small ubiquitin-like modifier (SUMO) substrate, but whether eIF5A is indeed SUMOylated and how relevant is this modification for eIF5A activities are still unknown. METHODS: SUMOylation was evaluated using in vitro SUMOylation assays, Histidine-tagged proteins purification from His6-SUMO2 transfected cells, and isolation of endogenously SUMOylated proteins using SUMO-binding entities (SUBES). Mutants were engineered by site-directed mutagenesis. Protein stability was measured by a cycloheximide chase assay. Protein localization was determined using immunofluorescence and cellular fractionation assays. The ability of eIF5A1 constructs to complement the growth of Saccharomyces cerevisiae strains harboring thermosensitive mutants of a yeast EIF5A homolog gene (HYP2) was analyzed. The polysome profile and the formation of stress granules in cells expressing Pab1-GFP (a stress granule marker) by immunofluorescence were determined in yeast cells subjected to heat shock. Cell growth and migration of pancreatic ductal adenocarcinoma PANC-1 cells overexpressing different eIF5A1 constructs were evaluated using crystal violet staining and transwell inserts, respectively. Statistical analysis was performed with GraphPad Software, using unpaired Student's t-test, or one-way or two-way analysis of variance (ANOVA). RESULTS: We found that eIF5A is modified by SUMO2 in vitro, in transfected cells and under endogenous conditions, revealing its physiological relevance. We identified several SUMO sites in eIF5A and found that SUMOylation modulates both the stability and the localization of eIF5A in mammalian cells. Interestingly, the SUMOylation of eIF5A responds to specific stresses, indicating that it is a regulated process. SUMOylation of eIF5A is conserved in yeast, the eIF5A SUMOylation mutants are unable to completely suppress the defects of HYP2 mutants, and SUMOylation of eIF5A is important for both stress granules formation and disassembly of polysomes induced by heat-shock. Moreover, mutation of the SUMOylation sites in eIF5A abolishes its promigratory and proproliferative activities in PANC-1 cells. CONCLUSIONS: SUMO2 conjugation to eIF5A is a stress-induced response implicated in the adaptation of yeast cells to heat-shock stress and required to promote the growth and migration of pancreatic ductal adenocarcinoma cells.


Assuntos
Adenocarcinoma , Saccharomyces cerevisiae , Animais , Humanos , Mamíferos , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina/metabolismo
3.
J Cell Sci ; 134(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34447991

RESUMO

Translation of mRNAs that encode peptide sequences with consecutive prolines (polyproline) requires the conserved and essential elongation factor eIF5A to facilitate the formation of peptide bonds. It has been shown that, upon eIF5A depletion, yeast ribosomes stall in polyproline motifs, but also in tripeptide sequences that combine proline with glycine and charged amino acids. Mammalian collagens are enriched in putative eIF5A-dependent Pro-Gly-containing tripeptides. Here, we show that depletion of active eIF5A in mouse fibroblasts reduced collagen type I α1 chain (Col1a1) content, which concentrated around the nuclei. Moreover, it provoked the upregulation of endoplasmic reticulum (ER) stress markers, suggesting retention of partially synthesized collagen 1 (Col1) in the ER. We confirmed that eIF5A is needed for heterologous collagen synthesis in yeast and, using a double luciferase reporter system, showed that eIF5A depletion interrupts translation at Pro-Gly collagenic motifs. A dramatically lower level of Col1a1 protein was also observed in functional eIF5A-depleted human hepatic stellate cells treated with the profibrotic cytokine TGF-ß1. In sum, our results show that collagen expression requires eIF5A and imply its potential as a target for regulating collagen production in fibrotic diseases.


Assuntos
Fatores de Iniciação de Peptídeos , Proteínas de Ligação a RNA , Animais , Colágeno/genética , Camundongos , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
Environ Microbiol ; 24(11): 5248-5260, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36382795

RESUMO

Iron participates as an essential cofactor in the biosynthesis of critical cellular components, including DNA, proteins and lipids. The ergosterol biosynthetic pathway, which is an important target of antifungal treatments, depends on iron in four enzymatic steps. Our results in the model yeast Saccharomyces cerevisiae show that the expression of ergosterol biosynthesis (ERG) genes is tightly modulated by iron availability probably through the iron-dependent variation of sterol and heme levels. Whereas the transcription factors Upc2 and Ecm22 are responsible for the activation of ERG genes upon iron deficiency, the heme-dependent factor Hap1 triggers their Tup1-mediated transcriptional repression. The combined regulation by both activating and repressing regulatory factors allows for the fine-tuning of ERG transcript levels along the progress of iron deficiency, avoiding the accumulation of toxic sterol intermediates and enabling efficient adaptation to rapidly changing conditions. The lack of these regulatory factors leads to changes in the yeast sterol profile upon iron-deficient conditions. Both environmental iron availability and specific regulatory factors should be considered in ergosterol antifungal treatments.


Assuntos
Deficiências de Ferro , Proteínas de Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Antifúngicos/metabolismo , Ergosterol/metabolismo , Regulação Fúngica da Expressão Gênica , Esteróis , Heme/metabolismo , Ferro/metabolismo , Fatores de Transcrição/genética
5.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163207

RESUMO

The eukaryotic translation initiation factor 5A (eIF5A) is an evolutionarily conserved protein that binds ribosomes to facilitate the translation of peptide motifs with consecutive prolines or combinations of prolines with glycine and charged amino acids. It has also been linked to other molecular functions and cellular processes, such as nuclear mRNA export and mRNA decay, proliferation, differentiation, autophagy, and apoptosis. The growing interest in eIF5A relates to its association with the pathogenesis of several diseases, including cancer, viral infection, and diabetes. It has also been proposed as an anti-aging factor: its levels decay in aged cells, whereas increasing levels of active eIF5A result in the rejuvenation of the immune and vascular systems and improved brain cognition. Recent data have linked the role of eIF5A in some pathologies with its function in maintaining healthy mitochondria. The eukaryotic translation initiation factor 5A is upregulated under respiratory metabolism and its deficiency reduces oxygen consumption, ATP production, and the levels of several mitochondrial metabolic enzymes, as well as altering mitochondria dynamics. However, although all the accumulated data strongly link eIF5A to mitochondrial function, the precise molecular role and mechanisms involved are still unknown. In this review, we discuss the findings linking eIF5A and mitochondria, speculate about its role in regulating mitochondrial homeostasis, and highlight its potential as a target in diseases related to energy metabolism.


Assuntos
Mitocôndrias/fisiologia , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Metabolismo Energético/fisiologia , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fatores de Iniciação de Peptídeos/genética , Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
6.
RNA Biol ; 18(10): 1458-1474, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33258404

RESUMO

A new paradigm has emerged proposing that the crosstalk between nuclear transcription and cytoplasmic mRNA stability keeps robust mRNA levels in cells under steady-state conditions. A key piece in this crosstalk is the highly conserved 5'-3' RNA exonuclease Xrn1, which degrades most cytoplasmic mRNAs but also associates with nuclear chromatin to activate transcription by not well-understood mechanisms. Here, we investigated the role of Xrn1 in the transcriptional response of Saccharomyces cerevisiae cells to osmotic stress. We show that a lack of Xrn1 results in much lower transcriptional induction of the upregulated genes but in similar high levels of their transcripts because of parallel mRNA stabilization. Unexpectedly, lower transcription in xrn1 occurs with a higher accumulation of RNA polymerase II (RNAPII) at stress-inducible genes, suggesting that this polymerase remains inactive backtracked. Xrn1 seems to be directly implicated in the formation of a competent elongation complex because Xrn1 is recruited to the osmotic stress-upregulated genes in parallel with the RNAPII complex, and both are dependent on the mitogen-activated protein kinase Hog1. Our findings extend the role of Xrn1 in preventing the accumulation of inactive RNAPII at highly induced genes to other situations of rapid and strong transcriptional upregulation.


Assuntos
Exorribonucleases/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Estabilidade de RNA , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
7.
RNA Biol ; 18(9): 1310-1323, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33138675

RESUMO

mRNA homoeostasis is favoured by crosstalk between transcription and degradation machineries. Both the Ccr4-Not and the Xrn1-decaysome complexes have been described to influence transcription. While Ccr4-Not has been shown to directly stimulate transcription elongation, the information available on how Xrn1 influences transcription is scarce and contradictory. In this study we have addressed this issue by mapping RNA polymerase II (RNA pol II) at high resolution, using CRAC and BioGRO-seq techniques in Saccharomyces cerevisiae. We found significant effects of Xrn1 perturbation on RNA pol II profiles across the genome. RNA pol II profiles at 5' exhibited significant alterations that were compatible with decreased elongation rates in the absence of Xrn1. Nucleosome mapping detected altered chromatin configuration in the gene bodies. We also detected accumulation of RNA pol II shortly upstream of polyadenylation sites by CRAC, although not by BioGRO-seq, suggesting higher frequency of backtracking before pre-mRNA cleavage. This phenomenon was particularly linked to genes with poorly positioned nucleosomes at this position. Accumulation of RNA pol II at 3' was also detected in other mRNA decay mutants. According to these and other pieces of evidence, Xrn1 seems to influence transcription elongation at least in two ways: by directly favouring elongation rates and by a more general mechanism that connects mRNA decay to late elongation.


Assuntos
Cromatina/metabolismo , Exorribonucleases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Elongação da Transcrição Genética , Fatores de Elongação da Transcrição/metabolismo , Cromatina/química , Cromatina/genética , Exorribonucleases/genética , Regulação Fúngica da Expressão Gênica , Nucleossomos/genética , Nucleossomos/metabolismo , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética
8.
PLoS Genet ; 14(7): e1007563, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30059503

RESUMO

RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5' end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered.


Assuntos
Pressão Osmótica/fisiologia , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Glicerol-3-Fosfato Desidrogenase (NAD+)/genética , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica/fisiologia , Biossíntese de Proteínas/fisiologia , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
PLoS Genet ; 14(6): e1007476, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29912874

RESUMO

In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are essential for translational repression. We show that the role played by Cth2 as a negative translational regulator extends to other mRNA targets such as WTM1, CCP1 and HEM15. A structure-function analysis of Cth2 protein suggests that the Cth2 amino-terminal domain (NTD) is important for both mRNA turnover and translation inhibition, while its carboxy-terminal domain (CTD) only participates in the regulation of translation, but is dispensable for mRNA degradation. Finally, we demonstrate that the Cth2 CTD is physiologically relevant for adaptation to iron deficiency.


Assuntos
Deficiências de Ferro , Ferro/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo , Elementos Ricos em Adenilato e Uridilato , Adaptação Biológica/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Estabilidade de RNA/genética , RNA Mensageiro/genética , Sequências Reguladoras de Ácido Ribonucleico , Fatores de Transcrição/genética
10.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379337

RESUMO

Translation elongation factor eIF5A binds to ribosomes to promote peptide bonds between problematic amino acids for the reaction like prolines. eIF5A is highly conserved and essential in eukaryotes, which usually contain two similar but differentially expressed paralogue genes. The human eIF5A-1 isoform is abundant and implicated in some cancer types; the eIF5A-2 isoform is absent in most cells but becomes overexpressed in many metastatic cancers. Several reports have connected eIF5A and mitochondria because it co-purifies with the organelle or its inhibition reduces respiration and mitochondrial enzyme levels. However, the mechanisms of eIF5A mitochondrial function, and whether eIF5A expression is regulated by the mitochondrial metabolism, are unknown. We analysed the expression of yeast eIF5A isoforms Tif51A and Tif51B under several metabolic conditions and in mutants. The depletion of Tif51A, but not Tif51B, compromised yeast growth under respiration and reduced oxygen consumption. Tif51A expression followed dual positive regulation: by high glucose through TORC1 signalling, like other translation factors, to promote growth and by low glucose or non-fermentative carbon sources through Snf1 and heme-dependent transcription factor Hap1 to promote respiration. Upon iron depletion, Tif51A was down-regulated and Tif51B up-regulated. Both were Hap1-dependent. Our results demonstrate eIF5A expression regulation by cellular metabolic status.


Assuntos
Nutrientes , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Aerobiose/efeitos dos fármacos , Carbono/farmacologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Fermentação/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Heme/metabolismo , Ferro/metabolismo , Deficiências de Ferro , Lisina/análogos & derivados , Lisina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Análise do Fluxo Metabólico , Modelos Biológicos , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Fator de Iniciação de Tradução Eucariótico 5A
11.
Nucleic Acids Res ; 45(12): 7326-7338, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28549188

RESUMO

eIF5A is an essential protein involved in protein synthesis, cell proliferation and animal development. High eIF5A expression is observed in many tumor types and has been linked to cancer metastasis. Recent studies have shown that eIF5A facilitates the translation elongation of stretches of consecutive prolines. Activated eIF5A binds to the empty E-site of stalled ribosomes, where it is thought to interact with the peptidyl-tRNA situated at the P-site. Here, we report a genome-wide analysis of ribosome stalling in Saccharomyces cerevisiae eIF5A depleted cells using 5Pseq. We confirm that, in the absence of eIF5A, ribosomes stall at proline stretches, and extend previous studies by identifying eIF5A-dependent ribosome pauses at termination and at >200 tripeptide motifs. We show that presence of proline, glycine and charged amino acids at the peptidyl transferase center and at the beginning of the peptide exit tunnel arrest ribosomes in eIF5A-depleted cells. Lack of eIF5A also renders ribosome accumulation at the stop codons. Our data indicate specific protein functional groups under the control of eIF5A, including ER-coupled translation and GTPases in yeast and cytoskeleton organization, collagen metabolism and cell differentiation in humans. Our results support a broad mRNA-specific role of eIF5A in translation and identify the conserved motifs that affect translation elongation from yeast to humans.


Assuntos
Genoma Fúngico , Elongação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Sítios de Ligação , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fatores de Iniciação de Peptídeos/metabolismo , Prolina/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
12.
PLoS Genet ; 12(10): e1006395, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27768707

RESUMO

In eukaryotes, Dom34 upregulates translation by securing levels of activatable ribosomal subunits. We found that in the yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans, Dom34 interacts genetically with Pmt1, a major isoform of protein O-mannosyltransferase. In C. albicans, lack of Dom34 exacerbated defective phenotypes of pmt1 mutants, while they were ameliorated by Dom34 overproduction that enhanced Pmt1 protein but not PMT1 transcript levels. Translational effects of Dom34 required the 5'-UTR of the PMT1 transcript, which bound recombinant Dom34 directly at a CA/AC-rich sequence and regulated in vitro translation. Polysomal profiling revealed that Dom34 stimulates general translation moderately, but that it is especially required for translation of transcripts encoding Pmt isoforms 1, 4 and 6. Because defective protein N- or O-glycosylation upregulates transcription of PMT genes, it appears that Dom34-mediated specific translational upregulation of the PMT transcripts optimizes cellular responses to glycostress. Its translational function as an RNA binding protein acting at the 5'-UTR of specific transcripts adds another facet to the known ribosome-releasing functions of Dom34 at the 3'-UTR of transcripts.


Assuntos
Candida albicans/genética , Proteínas de Ciclo Celular/genética , Endorribonucleases/genética , Manosiltransferases/genética , Biossíntese de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Candida albicans/crescimento & desenvolvimento , Proteínas de Ciclo Celular/biossíntese , Endorribonucleases/biossíntese , Glicosilação , Humanos , Oligonucleotídeos/genética , Fenótipo , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Ribossomos/genética , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese
13.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 314-323, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864078

RESUMO

In response to different adverse conditions, most eukaryotic organisms, including Saccharomyces cerevisiae, downregulate protein synthesis through the phosphorylation of eIF2α (eukaryotic initiation factor 2α) by Gcn2, a highly conserved protein kinase. Gcn2 also controls the translation of Gcn4, a transcription factor involved in the induction of amino acid biosynthesis enzymes. Here, we have studied the functional role of Gcn2 and Gcn2-regulating proteins, in controlling translation during temperature downshifts of TRP1 and trp1 yeast cells. Our results suggest that neither cold-instigated amino acid limitation nor Gcn2 are involved in the translation suppression at low temperature. However, loss of TRP1 causes increased eIF2α phosphorylation, Gcn2-dependent polysome disassembly and overactivity of Gcn4, which result in cold-sensitivity. Indeed, knock-out of GCN2 improves cold growth of trp1 cells. Likewise, mutation of several Gcn2-regulators and effectors results in cold-growth effects. Remarkably, we found that Hog1, the osmoresponsive MAPK, plays a role in the regulatory mechanism of Gcn2-eIF2α. Finally, we demonstrated that P-body formation responds to a downshift in temperature in a TRP1-dependent manner and is required for cold tolerance.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Biossíntese de Proteínas , Saccharomyces cerevisiae/fisiologia , Triptofano/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Metabolismo Energético , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Triptofano/metabolismo
14.
Biochim Biophys Acta ; 1859(2): 405-19, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26775127

RESUMO

The highly conserved Saccharomyces cerevisiae cap-binding protein Cbc1/Sto1 binds mRNA co-transcriptionally and acts as a key coordinator of mRNA fate. Recently, Cbc1 has also been implicated in transcription elongation and pre-initiation complex (PIC) formation. Previously, we described Cbc1 to be required for cell growth under osmotic stress and to mediate osmostress-induced translation reprogramming. Here, we observe delayed global transcription kinetics in cbc1Δ during osmotic stress that correlates with delayed recruitment of TBP and RNA polymerase II to osmo-induced promoters. Interestingly, we detect an interaction between Cbc1 and the MAPK Hog1, which controls most gene expression changes during osmostress, and observe that deletion of CBC1 delays the accumulation of the activator complex Hot1-Hog1 at osmostress promoters. Additionally, CBC1 deletion specifically reduces transcription rates of highly transcribed genes under non-stress conditions, such as ribosomal protein (RP) genes, while having low impact on transcription of weakly expressed genes. For RP genes, we show that recruitment of the specific activator Rap1, and subsequently TBP, to promoters is Cbc1-dependent. Altogether, our results indicate that binding of Cbc1 to the capped mRNAs is necessary for the accumulation of specific activators as well as PIC components at the promoters of genes whose expression requires high and rapid transcription.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Nucleares/genética , Proteínas de Ligação ao Cap de RNA/genética , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Iniciação da Transcrição Genética , Regulação Fúngica da Expressão Gênica , Pressão Osmótica , Saccharomyces cerevisiae , Transcrição Gênica
15.
Biochim Biophys Acta ; 1849(6): 722-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25689021

RESUMO

The high osmolarity glycerol (HOG) pathway, composed of membrane-associated osmosensors, adaptor proteins and core signaling kinases, is essential for the survival of yeast cells under hyper-osmotic stress. Here, we studied how the MAPKKK Ste11 might change its protein interaction profile during acute stress exposure, with an emphasis on the sensory system of the so-called Sho1/Msb2 signaling branch. To characterize the transience of protein-protein interactions we utilized a recently described enzymatic in vivo protein proximity assay (M-track). Accordingly, interaction signals between Ste11 and many of its signaling partners can already be detected even under basal conditions. In most cases these signals increase after stress induction. All the interactions are completely dependent on the function of the Ste11-adaptor protein Ste50. Moreover, the presence of either Msb2 or Hkr1 is necessary for observing the interaction between Ste11 and scaffolding factors such as Sho1 and Pbs2. Additional assays suggest that Msb2 is not only in close proximity to Ste11 but might function as an individual Ste11 concentrator at the plasma membrane. Our results confirm the existence of negative feedback systems targeting the protein levels of Ste11 and Msb2 and also hint at changes in the dissociation rates of intermediate signaling complexes.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Pressão Osmótica , Mapas de Interação de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Retroalimentação Fisiológica , Glicerol/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase Quinases/genética , Proteínas de Membrana/metabolismo , Concentração Osmolar , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
16.
Biochim Biophys Acta ; 1849(6): 653-64, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25900709

RESUMO

Environmental alkalinisation represents a stress condition for yeast Saccharomyces cerevisiae, to which this organism responds with extensive gene expression remodelling. We show here that alkaline pH causes an overall decrease in the transcription rate (TR) and a fast destabilisation of mRNAs, followed by a more prolonged stabilisation phase. In many cases, augmented mRNA levels occur without the TR increasing, which can be attributed to mRNA stabilisation. In contrast, the reduced amount of mRNAs is contributed by both a drop in the TR and mRNA stability. A comparative analysis with other forms of stress shows that, unlike high pH stress, heat-shock, osmotic and oxidative stresses present a common transient increase in the TR. An analysis of environmentally-responsive (ESR) genes for the four above stresses suggests that up-regulated genes are governed mostly by TR changes and complex transient bidirectional changes in mRNA stability, whereas the down-regulated ESR gene set is driven by mRNA destabilisation and a lowered TR. In all the studied forms of stress, mRNA stability plays an important role in ESR. Overall, changes in mRNA levels do not closely reflect the rapid changes in the TR and stability upon exposure to stress, which highlights the existence of compensatory mechanisms.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , RNA Mensageiro/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Estresse Fisiológico/genética , Interação Gene-Ambiente , Concentração de Íons de Hidrogênio , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
17.
Biochim Biophys Acta ; 1829(10): 1111-25, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23916462

RESUMO

The response to hyperosmotic stress is mediated by the HOG pathway. The MAP kinase Hog1 activates several transcription factors, regulates chromatin-modifying enzymes and, through its interaction with RNA polymerase II, it directs this enzyme to osmotic stress-controlled genes. For such targeting, this kinase requires the interaction with transcription factors Hot1 and Sko1. However, phosphorylation of these proteins by Hog1 is not required for their functionality. In this study, we aim to identify the Hot1 elements involved in Hog1-binding and in the activation of transcription. Two-hybrid experiments demonstrated that the Hot1 sequence between amino acids 340 and 534 and the CD element of Hog1 are required for the interaction between the two proteins and the Hot1-dependent transcription regulation. Inside this Hot1 region, short sequence KRRRR (KR4, amino acids 381-385) is essential for the kinase binding. Our data show that another element, sequence EDDDDD (ED5, amino acids 541-546), is essential for Hot1 binding to chromatin. Under osmotic stress conditions, both Hot1 elements, Hog1-interaction KR4 and DNA-binding ED5, are involved in the appropriate recruitment of Hog1 and RNA polymerase II to genes controlled by this transcription factor. Moreover, both sequences are required for osmotolerance and KR4 is necessary for the functionality of the HOG pathway. According to several experiments described in this study, the Hot1 protein is capable of forming homodimers.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osmorregulação/genética , Elementos de Resposta/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Cromatina , Imunoprecipitação da Cromatina , Imunoprecipitação , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo
18.
Biochim Biophys Acta ; 1829(11): 1248-55, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24103494

RESUMO

Elongation speed is a key parameter in RNA polymerase II (RNA pol II) activity. It affects the transcription rate, while it is conditioned by the physicochemical environment it works in at the same time. For instance, it is well-known that temperature affects the biochemical reactions rates. Therefore in free-living organisms that are able to grow at various environmental temperatures, such as the yeast Saccharomyces cerevisiae, evolution should have not only shaped the structural and functional properties of this key enzyme, but should have also provided mechanisms and pathways to adapt its activity to the optimal performance required. We studied the changes in RNA pol II elongation speed caused by alternations in growth temperature in yeast to find that they strictly follow the Arrhenius equation, and that they also provoke an almost inverse proportional change in RNA pol II density within the optimal growth temperature range (26-37 °C). Moreover, we discovered that yeast cells control the transcription initiation rate by changing the total amount of available RNA pol II.


Assuntos
RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Western Blotting , Primers do DNA , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Temperatura , Transcrição Gênica
19.
Int J Biol Macromol ; 254(Pt 1): 127743, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287569

RESUMO

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The single-celled eukaryote Euplotes exhibit high frequency of PRF. However, the molecular mechanism of modulating Euplotes PRF remains largely unknown. Here, we identified two novel eIF5A genes, eIF5A1 and eIF5A2, in Euplotes octocarinatus and found that the Eo-eIF5A2 gene requires a -1 PRF to produce complete protein product. Although both Eo-eIF5As showed significant structural similarity with yeast eIF5A, neither of them could functionally replace yeast eIF5A. Eo-eIF5A knockdown inhibited +1 PRF of the η-tubulin gene. Using an in vitro reconstituted translation system, we found that hypusinated Eo-eIF5A (Eo-eIF5AH) can promote +1 PRF at the canonical AAA_UAA frameshifting site of Euplotes. The results showed eIF5A is a novel trans-regulator of PRF in Euplotes and has an evolutionary conserved role in regulating +1 PRF in eukaryotes.


Assuntos
Euplotes , Mudança da Fase de Leitura do Gene Ribossômico , Mudança da Fase de Leitura do Gene Ribossômico/genética , Euplotes/genética , Euplotes/metabolismo , Saccharomyces cerevisiae/genética
20.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38187585

RESUMO

The efficient import of nuclear-encoded proteins into mitochondria is crucial for proper mitochondrial function. The conserved translation factor eIF5A is primarily known as an elongation factor which binds ribosomes to alleviate ribosome stalling at sequences encoding polyprolines or combinations of proline with glycine and charged amino acids. eIF5A is known to impact the mitochondrial function across a variety of species although the precise molecular mechanism underlying this impact remains unclear. We found that depletion of eIF5A in yeast drives reduced translation and levels of TCA cycle and oxidative phosphorylation proteins. We further found that loss of eIF5A leads to the accumulation of mitoprotein precursors in the cytosol as well as to the induction of a mitochondrial import stress response. Here we identify an essential polyproline-containing protein as a direct eIF5A target for translation: the mitochondrial inner membrane protein Tim50, which is the receptor subunit of the TIM23 translocase complex. We show how eIF5A directly controls mitochondrial protein import through the alleviation of ribosome stalling along TIM50 mRNA at the mitochondrial surface. Removal of the polyprolines from Tim50 rescues the mitochondrial import stress response, as well as the translation of oxidative phosphorylation reporter genes in an eIF5A loss of function. Overall, our findings elucidate how eIF5A impacts the mitochondrial function by reducing ribosome stalling and facilitating protein translation, thereby positively impacting the mitochondrial import process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA