Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257313

RESUMO

Electronic waste (e-waste) is one of the fastest-growing waste streams in the world and Europe is classified as the first producer in terms of per capita amount. To reduce the environmental impact of e-waste, it is important to recycle it. This work shows the possibility of reusing glassy substrates, derived from the MW-assisted acidic leaching of Waste Printed Circuit Boards (WPCBs), as an adsorbent material. The results revealed an excellent adsorption capability against methylene blue (MB; aqueous solutions in the concentration range 10-5 M-2 × 10-5 M, at pH = 7.5). Comparisons were performed with reference samples such as activated carbons (ACs), the adsorbent mostly used at the industrial level; untreated PCB samples; and ground glass slides. The obtained results show that MW-treated WPCB powder outperformed both ground glass and ground untreated PCBs in MB adsorption, almost matching AC adsorption. The use of this new adsorbent obtained through the valorization of e-waste offers advantages not only in terms of cost but also in terms of environmental sustainability.

2.
Environ Res ; 216(Pt 3): 114632, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347397

RESUMO

The ubiquitous distribution of plastics and microplastics (MPs) and their resistance to biological and chemical decay is adversely affecting the environment. MPs are considered as emerging contaminants of concern in all the compartments, including terrestrial, aquatic, and atmospheric environments. Efficient monitoring, detection, and removal technologies require reliable methods for a qualitative and quantitative analysis of MPs, considering point-of-need testing a new evolution and a great trend at the market level. In the last years, portable spectrometers have gained popularity thanks to the excellent capability for fast and on-site measurements. Ultra-compact spectrometers coupled with chemometric tools have shown great potential in the polymer analysis, showing promising applications in the environmental field. Nevertheless, systematic studies are still required, in particular for the identification and quantification of fragments at the microscale. This study demonstrates the proof-of-concept of a Miniaturized Near-Infrared (MicroNIR) spectrometer coupled with chemometrics for the quantitative analysis of ternary mixtures of MPs. Polymers were chosen representing the three most common polymers found in the environment (polypropylene, polyethene, and polystyrene). Daily used plastic items were mechanically fragmented at laboratory scale mimicking the environmental breakdown process and creating "true-to-life" MPs for the assessment of analytical methods for MPs identification and quantification. The chemical nature of samples before and after fragmentation was checked by Raman spectroscopy. Sixty three different mixtures were prepared: 42 for the training set and 21 for the test set. Blends were investigated by the MicroNIR spectrometer, and the dataset was analysed using Principal Component Analysis (PCA) and Partial Least Square (PLS) Regression. PCA score plot showed a samples distribution consistent with their composition. Quantitative analysis by PLS showed the great capability prediction of the polymer's percentage in the mixtures, with R2 greater than 0.9 for the three analytes and a low and comparable Root-Mean Square Error. In addition, the developed model was challenged with environmental weathered materials to validate the system with real plastic pollution. The findings show the feasibility of employing a portable tool in conjunction with chemometrics to quantify the most abundant forms of MPs found in the environment.


Assuntos
Microplásticos , Plásticos , Plásticos/análise , Quimiometria , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise dos Mínimos Quadrados
3.
Small ; 18(26): e2108077, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35642950

RESUMO

Organic electrochemical transistors (OECTs) rely on volumetric ion-modulation of the electronic current to provide low-voltage operation, large signal amplification, enhanced sensing capabilities, and seamless integration with biology. The majority of current OECT technologies require multistep photolithographic microfabrication methods on glass or plastic substrates, which do not provide an ideal path toward ultralow cost ubiquitous and sustainable electronics and bioelectronics. At the same time, the development of advanced bioelectronic circuits combining bio-detection, amplification, and local processing functionalities urgently demand for OECT technology platforms with a monolithic integration of high-performance iontronic circuits and sensors. Here, fully printed mask-less OECTs fabricated on thin-film biodegradable and compostable substrates are proposed. The dispensing and capillary printing methods are used for depositing both high- and low-viscosity OECT materials. Fully printed OECT unipolar inverter circuits with a gain normalized to the supply voltage as high as 136.6 V-1 , and current-driven sensors for ion detection and real-time monitoring with a sensitivity of up to 506 mV dec-1 , are integrated on biodegradable and compostable substrates. These universal building blocks with the top-performance ever reported demonstrate the effectiveness of the proposed approach and can open opportunities for next-generation high-performance sustainable bioelectronics.


Assuntos
Técnicas Biossensoriais , Transistores Eletrônicos , Técnicas Biossensoriais/métodos , Eletrônica
4.
Angew Chem Int Ed Engl ; 61(28): e202205013, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35532974

RESUMO

The photodimerization of 4-aminothiophenol (PATP) into 4,4'-dimercaptobenzene (DMAB) has been extensively utilized as a paradigm reaction to probe the role of surface plasmons in nanoparticle-mediated light-driven processes. Here I report the first observation of the PATP-to-DMAB photoreaction in the absence of any plasmonic mediators. The reaction was observed to occur with different kinetics either for PATP adsorbed on non-plasmonic nanoparticles (TiO2 , ZnO, SiO2 ) or deposited as macroscopic droplets. Confocal microRaman spectroscopy enabled to investigate the reaction progress in different plasmon-free contexts, either aerobic or anaerobic, suggesting a new interpretation of the photodimerization process, based on direct laser-induced activation of singlet oxygen species. These results provide new insights in light-driven redox processes, elucidating the role of sample morphology, light and oxygen.

5.
Molecules ; 26(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801127

RESUMO

In this work, we assess three different methods for the extraction of pectin from waste orange peels, using water as extracting solvent. "Hot-water", Rapid Solid Liquid Dynamic (RSLD) and microwave-assisted extractions have been compared and evaluated in terms of amount and quality of extracted pectin, as well as embodied energy. This analysis provides useful guidelines for pectin production from food waste according to green procedures, enabling the identification of acidic "hot-water" as the most sustainable extraction route.


Assuntos
Citrus sinensis/química , Química Verde , Pectinas/isolamento & purificação , Eliminação de Resíduos , Pectinas/química
6.
Molecules ; 26(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807763

RESUMO

The Sustainable Development Goals (SDGs) have been proposed to give a possible future to humankind. Due to the multidimensional characteristic of sustainability, SDGs need research activities with a multidisciplinary approach. This work aims to provide a critical review of the results concerning sustainable materials obtained by Italian researchers affiliated to the National Interuniversity Consortium of Materials Science and Technology (INSTM) and their contribution to reaching specific indicators of the 17 SDGs. Data were exposed by using the Web of Science (WoS) database. In the investigated period (from 2016 to 2020), 333 works about sustainable materials are found and grouped in one of the following categories: chemicals (33%), composites (11%), novel materials for pollutants sequestration (8%), bio-based and food-based materials (10%), materials for green building (8%), and materials for energy (29%). This review contributes to increasing the awareness of several of the issues concerning sustainable materials but also to encouraging the researchers to focus on SDGs' interconnections. Indeed, the mapping of the achievements can be relevant to the decision-makers to identify the opportunities that materials can offer to achieve the final goals. In this frame, a "Sustainable Materials Partnership for SDGs" is envisaged for more suitable resource management in the future.


Assuntos
Materiais Biocompatíveis , Desenvolvimento Sustentável , Fontes Geradoras de Energia , Poluentes Ambientais/química , Poluentes Ambientais/isolamento & purificação , Alimentos , Objetivos , Itália
7.
Phys Chem Chem Phys ; 21(22): 11724-11730, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31114812

RESUMO

Integrated electronics, photonics and optoelectronics need full control of lattice reconstruction processes in silicon nanostructures at the nanoscale level. However, conventional thermal treatments do not meet the challenging requirements necessary for developing next-generation devices. Light can be a powerful tool to trigger and control opto-thermal effects in resonant nanostructures. Here we propose a new computational approach to light-matter interactions in silicon nanopillars, which simulates heat generation and propagation dynamics occurring in continuous wave laser processing over a wide temporal range (from 1 fs to about 25 hours). We demonstrate that a rational design of the nanostructure aspect ratio, type of substrate, laser irradiation time and wavelength enables amorphous-to-crystalline transformations to take place with a precise, sub-wavelength spatial localization. In particular, we show that visible light can be exploited to selectively crystallize the internal region of the pillars, which is not possible by conventional treatments. A detailed study on lattice crystallization and reconstruction dynamics reveals that local heating drives the formation of secondary antennas embedded into the pillars, highlighting the importance of taking into account the spatial and temporal evolution of the optical properties of the material under irradiation. This approach can be easily extended to many types of nanostructured materials and interfaces, offering a unique computational tool for many applications involving opto-thermal processes (fabrication, data storage, sensing, catalysis, resonant laser printing, opto-thermal therapy, etc.…).

8.
Chem Rev ; 116(24): 14921-14981, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27739670

RESUMO

Dielectrics represent a new frontier for surface-enhanced Raman scattering. They can serve as either a complement or an alternative to conventional, metal-based SERS, offering key advantages in terms of low invasiveness, reproducibility, versatility, and recyclability. In comparison to metals, dielectric systems and, in particular, semiconductors are characterized by a much greater variety of parameters and properties that can be tailored to achieve enhanced Raman scattering or related effects. Light-trapping and subwavelength-focusing capabilities, morphology-dependent resonances, control of band gap and stoichiometry, size-dependent plasmons and excitons, and charge transfer from semiconductors to molecules and vice versa are a few examples of the manifold opportunities associated with the use of semiconductors as SERS-active materials. This review provides a broad analysis of SERS with dielectrics, encompassing different optical phenomena at the basis of the Raman scattering enhancement and introducing future challenges for light harvesting, vibrational spectroscopy, imaging, and sensing.

9.
Phys Chem Chem Phys ; 20(22): 15307-15315, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29796465

RESUMO

Light-to-heat conversion in non-plasmonic, high refractive index nanoantennas is a key topic for many applications, including Raman sensing, laser writing, nanofabrication and photo-thermal therapy. However, heat generation and propagation in non-plasmonic antennas is increasingly debated and contradictory results have been reported so far. Here we report a finite element analysis of the steady-state temperature distribution and heat flow in SiO2/Si core/shell systems (silicon nanoshells) irradiated with different continuous wave lasers (λ = 532, 633 and 785 nm), under real working conditions. The complex interplay among the optical properties, morphology, degree of crystallinity of the nanoshells, thickness dependence of thermal conductivity and interactions with the substrate has been elucidated. This study reveals that all of these parameters can be appropriately combined for obtaining either stable nanoshells for Raman sensing or highly efficient sources of local heating. The optimal balance between thermal stability and field enhancement was found for crystalline Si shell layers with thicknesses ranging from 40 to 60 nm, irradiated by a NIR laser source. On the other hand, non-conformal amorphous or crystalline shell layers with a thickness >50 nm can reach a very high local temperature (above 1000 K) when irradiated with a low power density (less than 1 mW µm-2) laser sources. This work provides a general approach for an extensive investigation of the opto-thermal properties of high-index nanoantennas.

10.
Angew Chem Int Ed Engl ; 56(23): 6589-6593, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28464431

RESUMO

Oxygen evolution reaction (OER) is the most critical step in water splitting, still limiting the development of efficient alkaline water electrolyzers. Here we investigate the OER activity of Au-Fe nanoalloys obtained by laser-ablation synthesis in solution. This method allows a high amount of iron (up to 11 at %) to be incorporated into the gold lattice, which is not possible in Au-Fe alloys synthesized by other routes, due to thermodynamic constraints. The Au0.89 Fe0.11 nanoalloys exhibit strongly enhanced OER in comparison to the individual pure metal nanoparticles, lowering the onset of OER and increasing up to 20 times the current density in alkaline aqueous solutions. Such a remarkable electrocatalytic activity is associated to nanoalloying, as demonstrated by comparative examples with physical mixtures of gold and iron nanoparticles. These results open attractive scenarios to the use of kinetically stable nanoalloys for catalysis and energy conversion.

11.
Small ; 10(7): 1294-8, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24323940

RESUMO

Core-shell colloidal crystals can act as very efficient traps for light and analytes. Here it is shown that Raman-active probes can be achieved using SiO2-TiO2 core-shell beads. These systems are successfully tested in monitoring of glutathione redox cycle at physiological concentration in aqueous environment, without need of any interfering enhancers. These materials represent a promising alternative to conventional, metal-based SERS probes for investigating chemical and biochemical reactions under real working conditions.


Assuntos
Homeostase/efeitos da radiação , Luz , Óxidos/química , Análise Espectral Raman , Água/química , Coloides/química , Cristalização , Glutationa/química , Peróxido de Hidrogênio/química , Oxirredução/efeitos da radiação , Pós , Soluções
12.
Nanotechnology ; 25(46): 465705, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25360576

RESUMO

This paper reports an experimental investigation of surface-enhanced Raman scattering in high-density Si nanowire arrays obtained by electroless etching. A direct relationship between light trapping capabilities of Si nanowires and enhanced Raman scattering was demonstrated. Optimized arrays allowed for a remarkable increase of Raman sensitivity in comparison to reference planar samples. As a result, the detection limit of molecular probes under resonant excitation (e.g. methylene blue) can be extended by three orders of magnitude. In addition, continuous ultrathin films, that cannot be analyzed in conventional Raman experiments, are made detectable. In the case of anatase thin films, the detection limit of 5 nm was reached. Raman spectra of Si/TiO2 core/shell heterostructures demonstrate that the enhanced field resulting from surface multiple scattering is characterized by a large spatial extension (about fifty nanometers), making these materials a potential alternative to plasmonic metals for SERS experiments.

13.
Forensic Sci Int ; 354: 111881, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000148

RESUMO

Bones are among the structures most likely to be recovered after death. However, the low quantity of preserved DNA and complex processing from sample to DNA profile make forensic DNA analysis of bones a challenging task. Raman spectroscopy and gas chromatography-mass spectrometry (GC/MS), have the potential to be useful as screening tools for DNA analysis and in decomposition studies. The objective of this research was to assess the usefulness of such molecular investigations. Femur samples collected from 50 decomposing human bodies were subjected to Raman spectroscopy and GC/MS. Assessment of nuclear DNA quantity and short tandem repeat (STR) genotyping efficiency were also performed. Raman parameters (crystallinity, carbonate-to-phosphate ratio, mineral-to-matrix ratio) and detected lipids were recorded. Background fluorescence proved problematic for Raman analysis of forensic bones. Regardless, it was not associated with less preserved DNA or less detected STR alleles. Fatty acids, hydrocarbons, and five types of fatty acid methyl esters (FAMEs) were detected. The main phosphate peak position in Raman spectra was significantly correlated with preserved DNA (p = 0.03713), while significantly more STR alleles were detected in bones containing methyl hexadecenoate (p = 0.04236). Detection of FAMEs in the bone matrix suggests a reaction between methanol produced by bacteria and free fatty acids, which are not associated with the level of preservation of endogenous DNA. The techniques assessed have shown to be useful in molecular taphonomy studies and forensic genetics.


Assuntos
Genética Forense , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Paleontologia , DNA , Ácidos Graxos , Repetições de Microssatélites , Fosfatos
14.
J Am Chem Soc ; 135(15): 5541-4, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23560442

RESUMO

A remarkable enhancement of Raman scattering is achieved by TiO2 shell-based spherical resonators in the absence of plasmonic enhancers. This effect is ascribed to the synergistic combination of high refractive index of the shell layer, multiple light scattering through the spheres, and related geometrical factors and can be exploited to fabricate a new generation of self-diagnostic, recyclable SERS-active substrates.

15.
Small ; 9(19): 3301-7, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23606587

RESUMO

Plasmonic metal/semiconductor nanocomposites promise to be a breakthrough for boosting and investigating photon-assisted processes at the nanoscale, with exciting perspectives for energy conversion and catalysis. However, the efficiency and selectivity of these surface processes are still far from being controlled. Here, shown for the first time, is a new class of photocatalyst which is based on the synergistic combination of bowtie-like gold nanoantennas and SiO2 /TiO2 core/shell oxide beads. These systems are exploited as efficient near-field optical light concentrators, stimulating photon-driven processes at the metal-semiconductor interface. Extraordinary enhancements of photodegradation rates (minutes instead of hours) result from matching the nanoantenna surface plasmon resonance with the optical absorption of organic dyes and the excitation source wavelength. Moreover, strong Raman enhancements are observed allowing for direct in-situ monitoring of reaction progress of different analytes on the same site.

16.
Gels ; 10(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38247760

RESUMO

This study investigates the viability of developing chitosan-based hydrogels derived from waste shrimp shells for the removal of methylene blue and methyl orange, thereby transforming food waste into advanced materials for environmental remediation. Despite chitosan-based adsorbents being conventionally considered ideal for the removal of negative pollutants, through targeted functionalization with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) at varying concentrations, we successfully enhance the hydrogels' efficacy in also adsorbing positively charged adsorbates. Specifically, the incorporation of PEDOT:PSS at a concentration of 10% v/v emerges as a critical factor in facilitating the robust adsorption of dyes. In the case of the anionic dye methyl orange (MO, 10-5 M), the percentage of removed dye passed from 47% (for beads made of only chitosan) to 66% (for beads made of chitosan-PEDOT:PSS 10%), while, in the case of the cationic dye methylene blue (MB, 10-5 M), the percentage of removed dye passed from 52 to 100%. At the basis of this enhancement, there is an adsorption mechanism resulting from the interplay between electrostatic forces and π-π interactions. Furthermore, the synthesized functionalized hydrogels exhibit remarkable stability and reusability (at least five consecutive cycles) in the case of MB, paving the way for the development of cost-effective and sustainable adsorbents. This study highlights the potential of repurposing waste materials for environmental benefits, introducing an innovative approach to address the challenges regarding water pollution.

17.
ACS Appl Mater Interfaces ; 14(50): 56363-56373, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475583

RESUMO

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been recently proposed for Raman sensing of redox-active species in solution. Here, we investigated the rationale of this approach through systematic experiments, in which the Raman spectrum of PEDOT:PSS was analyzed in the presence of either nonoxidizing or oxidizing electrolytes. The results demonstrated that Raman spectra precisely reflect the conformation of PEDOT units and their interactions with PSS. Two different responses were observed. In the case of oxidizing electrolytes, the effect of charge transfer is accurately transduced in Raman spectrum changes. On the other hand, reduction induces a progressive separation between the PEDOT and PSS chains, which decreases their mutual interaction. This stimulus determines characteristic variations in the intensity, shape, and position of the Raman spectra. However, we demonstrated that the same effects can be obtained either by increasing the concentration of nonoxidizing electrolytes or by deprotonating PSS chains. This poses severe limitations to the use of PEDOT:PSS for this type of Raman sensing. This study allows us to revise most of the Raman results reported in the literature with a clear model, setting a new basis for investigating the dynamics of mixed electronic/ionic charge transfer in conductive polymers.

18.
Materials (Basel) ; 14(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205233

RESUMO

Stimuli-responsive materials offer a large variety of possibilities in fabrication of solid- state devices. Phase change materials (PCMs) undergo rapid and drastic changes of their optical properties upon switching from one crystallographic phase to another one. This peculiarity makes PCMs ideal candidates for a number of applications including sensors, active displays, photonic volatile and non-volatile memories for information storage and computer science and optoelectronic devices. This review analyzes different examples of PCMs, in particular germanium-antimonium tellurides and vanadium dioxide (VO2) and their applications in the above-mentioned fields, with a detailed discussion on potential, limitations and challenges.

19.
Microorganisms ; 9(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922043

RESUMO

A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This "green" process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste.

20.
Small ; 6(15): 1679-85, 2010 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-20603883

RESUMO

A simple strategy for enabling conductive pressure sensitive adhesives (PSAs) to work as light-responsive materials is reported. Direct laser-writing of PSA substrates was achieved by means of a continuous-wave He-Ne laser focused through the objectives of an optical microscope. This approach takes advantage of cooperative interplay between viscoelastic properties of PSAs and enhanced thermal conductivity provided by an extra overlayer of gold. In particular, the thickness of the gold layer is a crucial parameter for tuning the substrate responsiveness. Self-healing and self-degradation processes can be exploited for controlling the lifetime of the written information, whereas additional protective coatings can be introduced to achieve permanent storage.


Assuntos
Adesivos/química , Lasers , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA