Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cytokine ; 105: 8-16, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29428804

RESUMO

In sepsis, trauma and major surgery, where an explicit physiological insult leads to a significant systemic inflammatory response, the acute evolution of biomarkers have been delineated. In these settings, Interleukin (IL) -6 and TNF-α are often the first pro-inflammatory markers to rise, stimulating production of acute phase proteins followed by peaks in anti-inflammatory markers. Patients undergoing SPKT as a result of diabetic complications already have an inflammatory phenotype as a result of uraemia and glycaemia. How this inflammatory response is affected further by the trauma of major transplant surgery and how this may impact on graft survival is unknown, despite the recognised pro-inflammatory cytokines' detrimental effects on islet cell function. The aim of the study was to determine the evolution of biomarkers in omentum and serum in the peri-operative period following SPKT. The biochemical findings were correlated to clinical outcomes. Two omental biopsies were taken (at the beginning and end of surgery) and measured for CD68+ and CD206+ antibodies (M1 and M2 macrophages respectively). Serum was measured within the first 72 h post-SPKT for pro- and anti-inflammatory cytokines (IL -6, -10 and TNF-α), inflammatory markers (WCC and CRP) and endocrine markers (insulin, C-peptide, glucagon and resistin). 46 patients were recruited to the study. Levels of M1 (CD68+) and M2 (CD206+) macrophages were significantly raised at the end of surgery compared to the beginning (p = 0.003 and p < 0.001 respectively). Levels of C-peptide, insulin and glucagon were significantly raised 30 min post pancreas perfusion compared to baseline and were also significantly negatively related to prolonged cold ischaemic time (CIT) (p < 0.05). CRP levels correlated significantly with the Post-Operative Morbidity Survey (p < 0.05). The temporal inflammatory marker signature after SPKT is comparable to the pattern observed following other physiological insults. Unique to this study, we find that CIT is significantly related to early pancreatic endocrine function. In addition, this study suggests a predictive value of CRP in peri-operative morbidity following SPKT.


Assuntos
Biomarcadores/metabolismo , Isquemia Fria , Transplante de Rim , Transplante de Pâncreas , Adulto , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Omento/metabolismo , Alta do Paciente , Fatores de Tempo , Resultado do Tratamento
2.
FASEB J ; 31(10): 4636-4648, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28687612

RESUMO

Endothelial microparticles (EMPs) are endothelium-derived submicron vesicles that are released in response to diverse stimuli and are elevated in cardiovascular disease, which is correlated with risk factors. This study investigates the effect of EMPs on endothelial cell function and dysfunction in a model of free fatty acid (FFA) palmitate-induced oxidative stress. EMPs were generated from TNF-α-stimulated HUVECs and quantified by using flow cytometry. HUVECs were treated with and without palmitate in the presence or absence of EMPs. EMPs were found to carry functional eNOS and to protect against oxidative stress by positively regulating eNOS/Akt signaling, which restored NO production, increased superoxide dismutase and catalase, and suppressed NADPH oxidase and reactive oxygen species (ROS) production, with the involvement of NF-erythroid 2-related factor 2 and heme oxygenase-1. Conversely, under normal conditions, EMPs reduced NO release and increased ROS and redox-sensitive marker expression. In addition, functional assays using EMP-treated mouse aortic rings that were performed under homeostatic conditions demonstrated a decline in endothelium-dependent vasodilatation, but restored the functional response under lipid-induced oxidative stress. These data indicate that EMPs harbor functional eNOS and potentially play a role in the feedback loop of damage and repair during homeostasis, but are also effective in protecting against FFA-induced oxidative stress; thus, EMP function is reflected by the microenvironment.-Mahmoud, A. M., Wilkinson, F. L., McCarthy, E. M., Moreno-Martinez, D., Langford-Smith, A., Romero, M., Duarte, J., Alexander, M. Y. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína Oncogênica v-akt/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Humanos , Lipídeos/farmacologia , NADPH Oxidases/metabolismo , Vasodilatação/efeitos dos fármacos
3.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3311-3322, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27554845

RESUMO

BACKGROUND: Glycomimetics are a diverse array of saccharide-inspired compounds, designed to mimic the bioactive functions of glycosaminoglycans. Therefore, glycomimetics represent a unique source of novel therapies to target aberrant signaling and protein interactions in a wide range of diseases. We investigated the protective effects of four newly synthesized small molecule glycomimetics against lipid-induced endothelial dysfunction, with an emphasis on nitric oxide (NO) and oxidative stress. METHODS: Four aromatic sugar mimetics were synthesized by the stepwise transformation of 2,5-dihydroxybenzoic acid to derivatives (C1-C4) incorporating sulfate groups to mimic the structure of heparan sulfate. RESULTS: Glycomimetic-treated human umbilical vein endothelial cells (HUVECs) were exposed to palmitic acid to model lipid-induced oxidative stress. Palmitate-induced impairment of NO production was restored by the glycomimetics, through activation of Akt/eNOS signaling. Furthermore, C1-C4 significantly inhibited palmitate-induced reactive oxygen species (ROS) production, lipid peroxidation, and activity and expression of NADPH oxidase. These effects were attributed to activation of the Nrf2/ARE pathway and downstream activation of cellular antioxidant and cytoprotective proteins. In ex vivo vascular reactivity studies, the glycomimetics (C1-C4) also demonstrated a significant improvement in endothelium-dependent relaxation and decreased ROS production and NADPH oxidase activity in isolated mouse thoracic aortic rings exposed to palmitate. CONCLUSIONS: The small molecule glycomimetics, C1-C4, protect against lipid-induced endothelial dysfunction through up-regulation of Akt/eNOS and Nrf2/ARE signaling pathways. Thus, carbohydrate-derived therapeutics are a new class of glycomimetic drugs targeting endothelial dysfunction, regarded as the first line of defense against vascular complications in cardiovascular disease.


Assuntos
Endotélio Vascular/fisiopatologia , Lipídeos/toxicidade , Polissacarídeos/farmacologia , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Elementos de Resposta Antioxidante/genética , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Sobrevivência Celular/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Modelos Biológicos , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/farmacologia , Fosforilação/efeitos dos fármacos , Polissacarídeos/química , Substâncias Protetoras/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/química , Vasodilatação/efeitos dos fármacos
4.
Lancet ; 385 Suppl 1: S83, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26312905

RESUMO

BACKGROUND: Patients with systemic lupus erythematosus (SLE) have endothelial dysfunction and increased risk of cardiovascular disease. Endothelium-dependent dilatation (ED) is abnormal in patients with SLE, and endothelial repair mechanisms are also impaired. Myeloid angiogenic cells (MACs) promote angiogenesis to restore damaged vessels. Vitamin D deficiency is associated with cardiovascular disease in the general population and is prevalent in SLE. We aimed to assess the effect of vitamin D on endothelial repair and function. METHODS: Vitamin D deficient (<20 ng/mL) patients with SLE were treated with cholecalciferol by their physician. Vitamin D replete patients (>30 ng/mL) and healthy controls (>20 ng/mL) were also recruited. Endothelial function was determined by the ratio of ED to independent dilatation (EI). MACs from patients were cultured with and without 10 nM calcitriol, and function determined by migration and angiogenesis assays. Endothelial nitric oxide synthase (eNOS) expression was studied in human aortic endothelial cells treated with tumour necrosis factor α (TNFα) and MAC-conditioned media. FINDINGS: We studied 22 vitamin D deficient and 18 replete patients. Vitamin D deficient patients had an increased number of MACs compared with controls (p=0·04) but impaired migratory capacity (p=0·001) and reduced angiogenic capacity, although this was not statistically significant (p=0·13). Media from calcitriol-treated MACs significantly increased angiogenesis compared with untreated MACs (p=0·01). Calcitriol reduced IP-10 expression by MACs (p<0·0006), and blockade of IP-10 restored the angiogenic capacity of MACs from patients with SLE. In cholecalciferol-treated patients, change in 25-hydroxyvitamin D was strongly correlated with change in ED:EI (r=0·650, p=0·006) after adjustment for age (odds ratio 1·12, 95% CI 1·02-1·24; p=0·02). Media from calcitriol-treated MACs more strongly attenuated TNFα-mediated downregulation of eNOS in human aortic endothelial cells than did untreated MACs from patients with SLE (p=0·01). INTERPRETATION: In this small experimental study, calcitriol improved endothelial function in patients with stable SLE. This improvement was associated with an increase in MAC number and function. The improved angiogenic capacity in MACs might be mediated via downregulation of IP-10 and changes in ED:EI by MAC regulation of eNOS in endothelial cells. The findings suggest that vitamin D could be a novel therapy to reduce cardiovascular disease in this patient group. FUNDING: North West England Medical Research Council Fellowship Scheme in Clinical Pharmacology and Therapeutics (funding from UK Medical Research Council (grant number G1000417/94909), ICON, Astra Zeneca, GlaxoSmithKline, Medicines Evaluation Unit).

5.
Diabetologia ; 57(11): 2251-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25112376

RESUMO

Type 2 diabetes is associated with increased cardiovascular morbidity and mortality and early vascular ageing. This takes the form of atherosclerosis, with progressive vascular calcification being a major complication in the pathogenesis of this disease. Current research and drug targets in diabetes have hitherto focused on atherosclerosis, but vascular calcification is now recognised as an independent predictor of cardiovascular morbidity and mortality. An emerging regulatory pathway for vascular calcification in diabetes involves the receptor activator for nuclear factor κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG). Important novel biomarkers of calcification are related to levels of glycation and inflammation in diabetes. Several therapeutic strategies could have advantageous effects on the vasculature in patients with diabetes, including targeting the RANKL and receptor for AGE (RAGE) signalling pathways, since there has been little success-at least in macrovascular outcomes-with conventional glucose-lowering therapy. There is substantial and relevant clinical and basic science evidence to suggest that modulating RANKL-RANK-OPG signalling, RAGE signalling and the associated proinflammatory milieu alters the natural course of cardiovascular complications and outcomes in people with diabetes. However, further research is critically needed to understand the precise mechanisms underpinning these pathways, in order to translate the anti-calcification strategies into patient benefit.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ligante RANK/metabolismo , Receptores Imunológicos/metabolismo , Calcificação Vascular/metabolismo , Animais , Humanos , Osteoprotegerina/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais/fisiologia
6.
Ann Rheum Dis ; 73(6): 1144-50, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23644670

RESUMO

BACKGROUND: In a prospective observational study, we investigated whether patients with active systemic lupus erythematosus (SLE) had higher indices of endothelial damage and dysfunction than healthy controls and whether improved disease control was associated with improvement in these indices. METHODS: Twenty-seven patients with active SLE (four or more American College of Rheumatology (ACR) criteria) and 22 age-matched controls were assessed. Endothelial microparticles (EMPs; CD31+/annexin V+/CD42b-) were quantified using flow cytometry. Brachial artery flow-mediated dilatation (FMD) was measured using automated edge-tracking software. Twenty-two patients had a second assessment at a median (IQR) of 20 (16, 22) weeks after initiating new immunosuppressive therapy. RESULTS: SLE patients had a median (IQR) baseline global British Isles Lupus Assessment Group Disease Activity Index (BILAG-2004) score of 14 (12, 22). CD31+/annexin V+/CD42b- EMPs were higher (157 548/ml (59 906, 272 643) vs 41 025(30 179, 98 082); p=0.003) and endothelial-dependent FMD was lower (1.63% (-1.22, 5.32) vs 5.40% (3.02, 8.57); p=0.05) in SLE patients than controls. CD31+/annexin V+/CD42b- EMPs correlated inversely with FMD (%) (r(2) -0.40; p=0.006). At follow-up, the median (IQR) change in global BILAG-2004 score was -11 (-18, -3). CD31+/annexin V+/CD42b- EMP levels were reduced (166 982/ml (59 906, 278 775 vs 55 655(29 475, 188 659; p=0.02) and FMD had improved (0.33% (-2.31, 4.1) vs 3.19% (0.98, 5.09); p=0.1) at the second visit. CONCLUSIONS: Active SLE is associated with evidence of increased endothelial damage and endothelial dysfunction, which improved with suppression of inflammation. Better control of active inflammatory disease may contribute to improved cardiovascular risk in patients with SLE.


Assuntos
Artéria Braquial/fisiopatologia , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/fisiopatologia , Lúpus Eritematoso Sistêmico/metabolismo , Vasodilatação/fisiologia , Adulto , Anexina A5/metabolismo , Estudos de Casos e Controles , Endotélio Vascular/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imunossupressores/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Estudos Prospectivos , Resultado do Tratamento
7.
Cytokine ; 69(2): 165-79, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24972386

RESUMO

C-reactive protein (CRP) is the most acute-phase reactant serum protein of inflammation and a strong predictor of cardiovascular disease. Its expression is associated with atherosclerotic plaque instability and the formation of immature micro-vessels. We have previously shown that CRP upregulates endothelial-derived Notch-3, a key receptor involved in vascular development, remodelling and maturation. In this study, we investigated the links between the bioactive monomeric CRP (mCRP) and Notch-3 signalling in angiogenesis. We used in vitro (cell counting, wound-healing and tubulogenesis assays) and in vivo (chorioallantoic membrane) angiogenic assays and Western blotting to study the angiogenic signalling pathways induced by mCRP and Notch-3 activator chimera protein (Notch-3/Fc). Our results showed an additive effect on angiogenesis of mCRP stimulatory effect combined with Notch-3/Fc promoting bovine aortic endothelial cell (BAEC) proliferation, migration, tube formation in Matrigel(TM) with up-regulation of phospho-Akt expression. The pharmacological blockade of PI3K/Akt survival pathway by LY294002 fully inhibited in vitro and in vivo angiogenesis induced by mCRP/Notch-3/Fc combination while blocking Notch signalling by gamma-secretase inhibitor (DAPT) partially inhibited mCRP/Notch-3/Fc-induced angiogenesis. Using a BAEC vascular smooth muscle cell co-culture sprouting angiogenesis assay and transmission electron microscopy, we showed that activation of both mCRP and Notch-3 signalling induced the formation of thicker sprouts which were shown later by Western blotting to be associated with an up-regulation of N-cadherin expression and a down-regulation of VE-cadherin expression. Thus, mCRP combined with Notch-3 activator promote angiogenesis through the PI3K/Akt pathway and their therapeutic combination has potential to promote and stabilize vessel formation whilst reducing the risk of haemorrhage from unstable plaques.


Assuntos
Proteína C-Reativa/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Caderinas/metabolismo , Bovinos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Galinhas , Cromonas/farmacologia , Técnicas de Cocultura , Dipeptídeos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Eletroforese em Gel de Ágar , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Morfolinas/farmacologia , Miócitos de Músculo Liso/citologia , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
8.
Cells ; 13(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38391925

RESUMO

Heparan sulphate (HS) can act as a co-receptor on the cell surface and alterations in this process underpin many pathological conditions. We have previously described the usefulness of mimics of HS (glycomimetics) in protection against ß-glycerophosphate-induced vascular calcification and in the restoration of the functional capacity of diabetic endothelial colony-forming cells in vitro. This study aims to investigate whether our novel glycomimetic compounds can attenuate glycated low-density lipoprotein (g-LDL)-induced calcification by inhibiting RAGE signalling within the context of critical limb ischemia (CLI). We used an established osteogenic in vitro vascular smooth muscle cell (VSMC) model. Osteoprotegerin (OPG), sclerostin and glycation levels were all significantly increased in CLI serum compared to healthy controls, while the vascular calcification marker osteocalcin (OCN) was down-regulated in CLI patients vs. controls. Incubation with both CLI serum and g-LDL (10 µg/mL) significantly increased VSMC calcification vs. controls after 21 days, with CLI serum-induced calcification apparent after only 10 days. Glycomimetics (C2 and C3) significantly inhibited g-LDL and CLI serum-induced mineralisation, as shown by a reduction in alizarin red (AR) staining and alkaline phosphatase (ALP) activity. Furthermore, secretion of the osteogenic marker OCN was significantly reduced in VSMCs incubated with CLI serum in the presence of glycomimetics. Phosphorylation of cyclic AMP response element-binding protein (CREB) was significantly increased in g-LDL-treated cells vs. untreated controls, which was attenuated with glycomimetics. Blocking CREB activation with a pharmacological inhibitor 666-15 replicated the protective effects of glycomimetics, evidenced by elevated AR staining. In silico molecular docking simulations revealed the binding affinity of the glycomimetics C2 and C3 with the V domain of RAGE. In conclusion, these findings demonstrate that novel glycomimetics, C2 and C3 have potent anti-calcification properties in vitro, inhibiting both g-LDL and CLI serum-induced VSMC mineralisation via the inhibition of LDLR, RAGE, CREB and subsequent expression of the downstream osteogenic markers, ALP and OCN.


Assuntos
Lipoproteínas LDL , Calcificação Vascular , Humanos , Lipoproteínas LDL/efeitos adversos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Simulação de Acoplamento Molecular , Células Cultivadas , Calcificação Vascular/metabolismo
9.
Cytokine ; 61(2): 622-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23273597

RESUMO

Extracellular matrix of dentine contains a rich cocktail of soluble cytokines and growth factors which mediate wound repair of the dentine-pulp complex. Hepatocyte growth factor (HGF) is a mesenchyme derived growth factor regulating a broad range of physiological processes including tissue development and regeneration. In this study, we have investigated the sequestration of HGF in the dentine matrix and analysed its action as a chemokine in the induction of differentiation and mineral deposition in pulp derived cells in vitro. Using ELISA, the presence of HGF was demonstrated in solubilised fractions of dentine matrix released by the therapeutic pulp repair materials of white and grey mineral trioxide aggregate. HGF was shown to be a chemo-attractant for primary rat dental pulp cells (RDPCs) in transwell assays highlighting its potential in progenitor cell recruitment during dentine-pulp tissue repair. Transcription factors Osterix and Runx2, and genes encoding for Osteopontin and Osteocalcin, were up-regulated in HGF-exposed RDPC cultures compared with controls. Adenoviral-mediated expression of HGF in RDPCs or exposure to recombinant HGF induced mineral secretion in RDPCs which was significantly greater than controls. The receptor of HGF, c-Met was also detected within human dental pulp indicating the potential for HGF released from dentine matrix to contribute to cellular signalling events following tissue injury. Combined, these data suggest that HGF is important in the repair of the dentine-pulp complex potentially participating in several aspects of wound healing.


Assuntos
Polpa Dentária/citologia , Polpa Dentária/metabolismo , Dentina/metabolismo , Matriz Extracelular/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Regeneração , Animais , Calcificação Fisiológica , Diferenciação Celular , Células Cultivadas , Quimiotaxia , Humanos , Masculino , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Cicatrização
10.
Clin Exp Rheumatol ; 31(2): 225-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23295110

RESUMO

OBJECTIVES: Rheumatoid arthritis (RA) is associated with accelerated atherosclerosis and premature cardiovascular death. Anti-TNF therapy is thought to reduce clinical cardiovascular disease risk and improve vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to explore the effects of certolizumab pegol (CZP) on TNF-activated human aortic endothelial cells (HAoECs). METHODS: HAoECs were cultured in vitro and exposed to i) TNF alone, ii) TNF plus CZP, or iii) neither agent. Microarray analysis and quantitative polymerase chain reaction were used to analyse gene expression. Activation of NF-κB was investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was performed to detect microparticle release from HAoECs. RESULTS: TNF alone had strong effects on endothelial gene expression, while TNF and CZP together produced a global gene expression pattern similar to untreated controls. In particular, genes for E-selectin, VCAM-1 and ICAM-1 were significantly up-regulated by TNF treatment. Notably, the TNF/CZP cocktail prevented the up-regulation of these genes. TNF-induced nuclear translocation of NF-κB was abolished by treatment with CZP. In addition the increased production of endothelial microparticles in TNF-activated HAoECs was prevented by treatment with CZP. CONCLUSIONS: We have found at cellular level, that a clinically available TNF inhibitor, CZP i) reduces adhesion molecule expression; ii) prevents TNF-induced activation of the NF-κB pathway and iii) prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Células Endoteliais/efeitos dos fármacos , Fragmentos Fab das Imunoglobulinas/farmacologia , Inflamação/prevenção & controle , Polietilenoglicóis/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Transporte Ativo do Núcleo Celular , Western Blotting , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/imunologia , Células Cultivadas , Certolizumab Pegol , Selectina E/genética , Selectina E/metabolismo , Células Endoteliais/imunologia , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Proteínas I-kappa B/metabolismo , Imuno-Histoquímica , Inflamação/genética , Inflamação/imunologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 31(3): 608-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21205989

RESUMO

OBJECTIVE: Decorin and oxidized low-density lipoprotein (Ox-LDL) independently induce osteogenic differentiation of vascular smooth muscle cells (VSMCs). We aimed to determine whether decorin glycosaminoglycan (GAG) chain synthesis contributes to Ox-LDL-induced differentiation and calcification of human VSMCs in vitro. METHODS AND RESULTS: Human VSMCs treated with Ox-LDL to induce oxidative stress showed increased alkaline phosphatase (ALP) activity, accelerated mineralization, and a difference in both decorin GAG chain biosynthesis and CS/DS structure compared with untreated controls. Ox-LDL increased mRNA abundance of both xylosyltransferase (XT)-I, the key enzyme responsible for GAG chain biosynthesis and Msx2, a marker of osteogenic differentiation. Furthermore, downregulation of XT-I expression using small interfering RNA blocked Ox-LDL-induced VSMC mineralization. Adenoviral-mediated overexpression of decorin, but not a mutated unglycanated form, accelerated mineralization of VSMCs, suggesting GAG chain addition on decorin is crucial for the process of differentiation. The decorin-induced VSMC osteogenic differentiation involved activation of the transforming growth factor (TGF)-ß pathway, because it was attenuated by blocking of TGF-ß receptor signaling and because decorin overexpression potentiated phosphorylation of the downstream signaling molecule smad2. CONCLUSIONS: These studies provide direct evidence that oxidative stress-mediated decorin GAG chain synthesis triggers TGF-ß signaling and mineralization of VSMCs in vitro.


Assuntos
Calcinose/metabolismo , Decorina/biossíntese , Lipoproteínas LDL/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteogênese , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Fosfatase Alcalina/metabolismo , Células Cultivadas , Decorina/genética , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Estresse Oxidativo , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fosforilação , Interferência de RNA , Proteína Smad2/metabolismo , Fatores de Tempo , UDP Xilose-Proteína Xilosiltransferase
12.
Cardiovasc Res ; 117(3): 836-849, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32402066

RESUMO

AIMS: Vascular calcification is a recognized predictor of cardiovascular risk in the diabetic patient, with DNA damage and accelerated senescence linked to oxidative stress-associated pathological calcification. Having previously shown that systemic SIRT1 is reduced in diabetes, the aim was to establish whether SIRT1 is protective against a DNA damage-induced senescent and calcified phenotype in diabetic vascular smooth muscle cells (vSMCs). METHODS AND RESULTS: Immunohistochemistry revealed decreased SIRT1 and increased DNA damage marker expression in diabetic calcified arteries compared to non-diabetic and non-calcified controls, strengthened by findings that vSMCs isolated from diabetic patients show elevated DNA damage and senescence, assessed by the Comet assay and telomere length. Hyperglycaemic conditions were used and induced DNA damage and enhanced senescence in vSMCs in vitro. Using H2O2 as a model of oxidative stress-induced DNA damage, pharmacological activation of SIRT1 reduced H2O2 DNA damage-induced calcification, prevented not only DNA damage, as shown by reduced comet tail length, but also decreased yH2AX foci formation, and attenuated calcification. While Ataxia Telanglectasia Mutated (ATM) expression was reduced following DNA damage, in contrast, SIRT1 activation significantly increased ATM expression, phosphorylating both MRE11 and NBS1, thus allowing formation of the MRN complex and increasing activation of the DNA repair pathway. CONCLUSION: DNA damage-induced calcification is accelerated within a diabetic environment and can be attenuated in vitro by SIRT1 activation. This occurs through enhancement of the MRN repair complex within vSMCs and has therapeutic potential within the diabetic patient.


Assuntos
Dano ao DNA , Diabetes Mellitus/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Sirtuína 1/deficiência , Calcificação Vascular/enzimologia , Hidrolases Anidrido Ácido/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cloreto de Cálcio/toxicidade , Estudos de Casos e Controles , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Senescência Celular , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Progressão da Doença , Glucose/toxicidade , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Proteína Homóloga a MRE11/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Proteínas Nucleares/metabolismo , Osteogênese , Fenótipo , Fosforilação , Artéria Poplítea/efeitos dos fármacos , Artéria Poplítea/enzimologia , Artéria Poplítea/patologia , Transdução de Sinais , Sirtuína 1/genética , Fatores de Tempo , Calcificação Vascular/genética , Calcificação Vascular/patologia
13.
RSC Med Chem ; 12(5): 779-790, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-34124676

RESUMO

The conceptual technology of small molecule glycomimetics, exemplified by compounds C1-4, has shown promising protective effects against lipid-induced endothelial dysfunction, restorative effects on diabetic endothelial colony forming cells, and preventative effects on downstream vascular calcification amongst other important in vitro and ex vivo studies. We report the optimised synthesis of an array of 17 small molecule glycomimetics, including the regio-, enantio- and diastereo-meric sulfated scaffolds of a hit structure along with novel desulfated examples. For the first time, the absolute stereochemical configurations of C1-4 have been clarified based on an identified and consistent anomaly with the Sharpless asymmetric dihydroxylation reaction. We have investigated the role and importance of sulfation pattern, location, regioisomers, and spatial orientation of distal sulfate groups on the modulation of endothelial dysfunction through their interaction with hepatocyte growth factor (HGF). In silico studies demonstrated the key interactions the persulfated glycomimetics make with HGF and revealed the importance of both sulfate density and positioning (both point chirality and vector) to biological activity. In vitro biological data of the most efficient binding motifs, along with desulfated comparators, support the modulatory effects of sulfated small molecule glycomimetics in the downstream signaling cascade of endothelial dysfunction. In vitro absorption, distribution, metabolism, elimination and toxicity (ADMET) data demonstrate the glycomimetic approach to be a promising approach for hit-to-lead studies.

14.
Circ Res ; 100(4): 502-9, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17255529

RESUMO

The calcification of blood vessels correlates with increased morbidity and mortality in patients with atherosclerosis, diabetes, and end-stage kidney disease. The receptor tyrosine kinase Axl is emerging as an important regulator of adult mammalian physiology and pathology. This study tests the hypothesis that Axl prevents the deposition of a calcified matrix by vascular smooth muscle cells (VSMCs) and that this occurs via the phosphatidylinositol 3-kinase (PI3K) signaling pathway. First, we demonstrate that Axl is expressed and phosphorylated in confluent VSMCs and that its expression is markedly downregulated as these cells calcify their matrix. Second, we demonstrate that overexpression of wild-type Axl, using recombinant adenoviruses, enhances Axl phosphorylation and downstream signaling via PI3K and Akt. Furthermore, overexpression of Axl significantly inhibits mineral deposition by VSMCs, as assessed by alizarin red staining and (45)Ca accumulation. Third, the addition of a PI3K inhibitor, wortmannin, negates the inhibition of mineralization by overexpression of wild-type Axl, suggesting that activation of downstream signaling via PI3K is crucial for its inhibitory activity. In contrast, Axl-mediated signaling is not enhanced by overexpression of kinase-dead Axl and mineralization is accelerated, although beta-glycerophosphate is still required for this effect. Finally, the caspase inhibitor zVAD.fmk attenuates the increased mineralization induced by kinase-dead Axl, suggesting that kinase-dead Axl stimulates mineralization by inhibiting the antiapoptotic effect of endogenous Axl. Together, these results demonstrate that signaling through Axl inhibits vascular calcification in vitro and suggest that therapeutics targeting this receptor may open up new avenues for the prevention of vascular calcification in vivo.


Assuntos
Calcinose/enzimologia , Calcinose/prevenção & controle , Cálcio/metabolismo , Músculo Liso Vascular/enzimologia , Proteínas Oncogênicas/biossíntese , Fosfatidilinositol 3-Quinases/fisiologia , Receptores Proteína Tirosina Quinases/biossíntese , Transdução de Sinais/fisiologia , Animais , Calcinose/genética , Cálcio/antagonistas & inibidores , Bovinos , Células Cultivadas , Humanos , Camundongos , Músculo Liso Vascular/patologia , Proteínas Oncogênicas/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/genética , Receptor Tirosina Quinase Axl
15.
Nephron ; 143(4): 234-242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31514183

RESUMO

BACKGROUND: Progressive chronic kidney disease (CKD) inevitably leads to salt and water retention and disturbances in the macro-and microcirculation. OBJECTIVES: We hypothesize that salt and water dysregulation in advanced CKD may be linked to inflammation and microvascular injury pathways. METHODS: We studied 23 CKD stage 5 patients and 11 healthy controls (HC). Tissue sodium concentration was assessed using 23Sodium magnetic resonance (MR) imaging. Hydration status was evaluated using bioimpedance spectroscopy. A panel of inflammatory and endothelial biomarkers was also measured. RESULTS: CKD patients had fluid overload (FO) when compared to HC (overhydration index: CKD = 0.5 ± 1.9 L vs. HC = -0.5 ± 1.0 L; p = 0.03). MR-derived tissue sodium concentrations were predominantly higher in the subcutaneous (SC) compartment (median [interquartile range] CKD = 22.4 mmol/L [19.4-31.3] vs. HC = 18.4 mmol/L [16.6-21.3]; p = 0.03), but not the muscle (CKD = 24.9 ± 5.5 mmol/L vs. HC = 22.8 ± 2.5 mmol/L; p = 0.26). Tissue sodium in both compartments correlated to FO (muscle: r = 0.63, p < 0.01; SC: rs = 0.63, p < 0.01). CKD subjects had elevated levels of vascular cell adhesion molecule (p < 0.05), tumor necrosis factor-alpha (p < 0.01), and interleukin (IL)-6 (p = 0.01) and lower levels of vascular endothelial growth factor-C (p = 0.04). FO in CKD was linked to higher IL-8 (r = 0.51, p < 0.05) and inversely associated to E-selectin (r = -0.52, p = 0.01). Higher SC sodium was linked to higher intracellular adhesion molecule (ICAM; rs = 0.54, p = 0.02). CONCLUSION: Salt and water accumulation in CKD appears to be linked with inflammation and endothelial activation pathways. Specifically IL-8, E-Selectin (in FO), and ICAM (in salt accumulation) may be implicated in the pathophysiology of FO and merit further investigation.


Assuntos
Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Desequilíbrio Hidroeletrolítico/fisiopatologia , Adulto , Biomarcadores/sangue , Compartimentos de Líquidos Corporais/diagnóstico por imagem , Compartimentos de Líquidos Corporais/fisiologia , Estudos de Casos e Controles , Estudos Transversais , Endotélio Vascular/lesões , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Inflamação/diagnóstico por imagem , Inflamação/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/diagnóstico por imagem , Sódio/metabolismo , Desequilíbrio Hidroeletrolítico/diagnóstico por imagem
16.
Sci Rep ; 9(1): 2309, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783159

RESUMO

Endothelial colony forming progenitor cell (ECFC) function is compromised in diabetes, leading to poor vascular endothelial repair, which contributes to impaired diabetic foot ulcer healing. We have generated novel glycomimetic drugs with protective effects against endothelial dysfunction. We investigated the effect of glycomimetic C3 on the functional capacity of diabetic ECFCs. ECFCs were isolated from healthy controls and patients with diabetes with neuroischaemic (NI) or neuropathic (NP) foot ulcers. Functionally, diabetic ECFCs demonstrated delayed colony formation (p < 0.02), differential proliferative capacity (p < 0.001) and reduced NO bioavailability (NI ECFCs; p < 0.05). Chemokinetic migration and angiogenesis were also reduced in diabetic ECFCs (p < 0.01 and p < 0.001), and defects in wound closure and tube formation were apparent in NP ECFCs (p < 0.01). Differential patterns in mitochondrial activity were pronounced, with raised activity in NI and depressed activity in NP cells (p < 0.05). The application of glycomimetic improved scratch wound closure in vitro in patient ECFCs (p < 0.01), most significantly in NI cells (p < 0.001), where tube formation (p < 0.05) was also improved. We demonstrate restoration of the deficits in NI cells but not NP cells, using a novel glycomimetic agent, which may be advantageous for therapeutic cell transplantation or as a localised treatment for NI but not NP patients.


Assuntos
Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Idoso , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Células Progenitoras Endoteliais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Fisiológica/fisiologia
17.
Circ Res ; 98(10): 1264-72, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16627786

RESUMO

Vascular calcification is present in many pathological conditions and is recognized as a strong predictor of future cardiovascular events. Current evidence suggests that it is a regulated process involving inducing and inhibitory molecules. Glucocorticoids have great clinical importance as antiinflammatory drugs and can act as potent inducers of osteogenic differentiation in vitro. The effect of glucocorticoids on vascular cells in vivo remains obscure. Pericytes are pluripotent cells that can differentiate into osteoblasts, and recent evidence suggests that they could participate in vascular calcification. We hypothesized that the synthetic glucocorticoid dexamethasone would enhance the rate of pericyte differentiation and mineralization in vitro with a concomitant suppression of calcification-inhibitory molecules. Three weeks of dexamethasone treatment induced a 2-fold increase in (1) alkaline phosphatase activity, (2) calcium deposition, and (3) the number of nodules formed in vitro; and a reduction in the expression of matrix Gla protein (MGP), osteopontin (OPN), and vascular calcification-associated factor (VCAF) mRNAs. The glucocorticoid receptor antagonist Org 34116 abolished dexamethasone-accelerated pericyte differentiation, nodule formation, and mineralization. Data obtained using Org 34116, the transcription inhibitor actinomycin D, and the protein synthesis inhibitor cyclohexamide suggest that MGP, OPN, and VCAF mRNA abundance are controlled at different and multiple levels by dexamethasone. This is the first report showing that dexamethasone enhances the osteogenic differentiation of pericytes and downregulates genes associated with inhibition of mineralization. Our study highlights the need for further investigation into the long-term consequences of prolonged glucocorticoid therapy on vascular calcification.


Assuntos
Calcinose/prevenção & controle , Proteínas de Ligação ao Cálcio/metabolismo , Dexametasona/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Genes/efeitos dos fármacos , Genes/fisiologia , Glucocorticoides/farmacologia , Pericitos/citologia , Proteínas/metabolismo , Sialoglicoproteínas/metabolismo , Animais , Calcinose/etiologia , Proteínas de Ligação ao Cálcio/genética , Bovinos , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Regulação para Baixo , Proteínas da Matriz Extracelular/genética , Expressão Gênica/efeitos dos fármacos , Minerais/metabolismo , NF-kappa B/antagonistas & inibidores , Osteogênese , Osteopontina , Pericitos/metabolismo , Proteínas/genética , RNA Mensageiro/metabolismo , Retina/citologia , Sialoglicoproteínas/genética , Doenças Vasculares/etiologia , Proteína de Matriz Gla
18.
Front Med (Lausanne) ; 5: 200, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042945

RESUMO

Over the past decade, we have witnessed an exponential growth of interest into the role of endothelial progenitor cells (EPCs) in cardiovascular disease. While the major thinking revolves around EPC angiogenic repair properties, we have used a hypothesis-driven approach to discover disease-related defects in their characteristics and based on these findings, have identified opportunities for functional enhancement, which offer an exciting avenue for translation into clinical intervention. In this review, we focus on two groups; circulating myeloid angiogenic cells (MACs) and late outgrowth endothelial colony forming cells (ECFCs), and will discuss the unique properties and defects of each population, as new insights have been gained into the potential function of each sub-type using current techniques and multiomic technology. We will discuss their role in inflammatory disorders and alterations in mitochondrial function. In addition, we share key insights into the glycocalyx, and propose this network of membrane-bound proteoglycans and glycoproteins, covering the endothelium warrants further investigation in order to clarify its significance in ECFC regulation of vascularization and angiogenesis and ultimately for potential translational therapeutic aspects.

19.
Lupus Sci Med ; 5(1): e000272, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30167314

RESUMO

OBJECTIVE: 10-year cardiovascular disease (CVD) risk scores are calculated using algorithms, including Framingham (worldwide) and QRISK2 (UK). Recently, an updated QRISK3 model was introduced, which considers new variables including SLE and steroid prescription, not included in QRISK2 and Framingham algorithms. We sought to determine the extent to which QRISK3 improves identification of high-risk patients with SLE and whether the score relates to standard and novel markers of SLE-specific endothelial dysfunction. METHODS: Framingham and QRISK2/3 scores were calculated in patients with SLE (n=109) and healthy controls (n=29) using clinical measures. In a smaller cohort (n=58), markers of inflammation and endothelial dysfunction, including CD144+ endothelial microvesicles (EMVs), triglycerides, vascular cell adhesion molecule (VCAM) and high-sensitivity C reactive protein (hsCRP) were quantified by flow cytometry and ELISA, respectively. RESULTS: Patients with SLE demonstrated significantly higher QRISK3 scores than controls (5.0%vs0.3%, p<0.001). 21/109 patients with SLE (19%) and 24/109(22%) were newly identified as being at high risk of a CV event when using QRISK3 versus QRISK2 (29vs8patients) and QRISK3 versus Framingham (29vs5patients; p<0.001), respectively. These 'new QRISK3' patients with SLE were more likely to have lupus nephritis, be anticardiolipin antibody positive, currently prescribed corticosteroids, had a higher Body Mass Index and systolic blood pressure (BP) than low-risk patients with SLE. Rates of antiplatelet (8/21) and statin use (5/21) were low in the new QRISK3 group. EMVs, hsCRP and triglyceride levels were significantly higher in new QRISK3 patientscompared with low-risk patients with SLE (p<0.05). Furthermore, pulse wave velocity and VCAM were significantly elevated in all high versus low QRISK3 patients. CONCLUSIONS: QRISK3 captures significantly more patients with SLE with an elevated 10-year risk of developing CVD, which is associated with measures of endothelial dysfunction; EMVs and systolic BP. The adoption of QRISK3 will enhance management of CVD risk in patients with SLE for improved outcome.

20.
Lupus Sci Med ; 5(1): e000267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538814

RESUMO

OBJECTIVES: We aimed to describe the rate and determinants of carotid plaque progression and the onset of clinical cardiovascular disease (CVD) in a UK SLE cohort. METHODS: Female patients with SLE of white British ancestry were recruited from clinics in the North-West of England and had a baseline clinical and CVD risk assessment including measurement of carotid intima-media thickness (CIMT) and plaque using B-mode Doppler ultrasound. Patients were followed up (>3.5 years after baseline visit) and had a repeat carotid Doppler to assess progression of plaque and CIMT. Clinical CVD events between visits were also noted. RESULTS: Of 200 patients with a baseline scan, 124 (62%) patients had a second assessment at a median (IQR) of 5.8 (5.2-6.3) years follow-up. New plaque developed in 32 (26%) (4.5% per annum) patients and plaque progression was observed in 52 (41%) patients. Factors associated with plaque progression were older age (OR 1.13; 95% CI 1.06 to 1.20), anticardiolipin (OR 3.36; 1.27 to 10.40) and anti-Ro (OR 0.31; 0.11 to 0.86) antibodies. CVD events occurred in 7.2% over 5.8 years compared with 1.0% predicted using the Framingham risk score (p<0.001). Higher triglycerides (OR 3.6; 1.23 to 10.56), cyclophosphamide exposure 'ever' (OR 16.7; 1.46 to 63.5) and baseline Systemic Lupus International Collaborating Clinics damage index score (OR 9.62; 1.46 to 123) independently predicted future CVD events. CONCLUSION: Accelerated atherosclerosis remains a major challenge in SLE disease management. A more comprehensive approach to CVD risk management taking into account disease factors such as severity and anticardiolipin antibody status may be necessary to improve CVD outcomes in this high-risk population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA