Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Cell ; 163(5): 1204-1213, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26582133

RESUMO

Duchenne muscular dystrophy (DMD), caused by mutations at the dystrophin gene, is the most common form of muscular dystrophy. There is no cure for DMD and current therapeutic approaches to restore dystrophin expression are only partially effective. The absence of dystrophin in muscle results in dysregulation of signaling pathways, which could be targets for disease therapy and drug discovery. Previously, we identified two exceptional Golden Retriever muscular dystrophy (GRMD) dogs that are mildly affected, have functional muscle, and normal lifespan despite the complete absence of dystrophin. Now, our data on linkage, whole-genome sequencing, and transcriptome analyses of these dogs compared to severely affected GRMD and control animals reveals that increased expression of Jagged1 gene, a known regulator of the Notch signaling pathway, is a hallmark of the mild phenotype. Functional analyses demonstrate that Jagged1 overexpression ameliorates the dystrophic phenotype, suggesting that Jagged1 may represent a target for DMD therapy in a dystrophin-independent manner. PAPERCLIP.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Distrofia Muscular de Duchenne/genética , Animais , Proliferação de Células , Doenças do Cão/genética , Cães , Distrofina/deficiência , Distrofina/genética , Feminino , Estudo de Associação Genômica Ampla , Proteína Jagged-1 , Masculino , Camundongos , Distrofia Muscular Animal/genética , Linhagem , Penetrância , Proteínas Serrate-Jagged , Transcriptoma , Peixe-Zebra , Proteínas de Peixe-Zebra
2.
FASEB J ; 37(10): e23198, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37742307

RESUMO

DOCK (dedicator of cytokinesis) is an 11-member family of typical guanine nucleotide exchange factors (GEFs) expressed in the brain, spinal cord, and skeletal muscle. Several DOCK proteins have been implicated in maintaining several myogenic processes such as fusion. We previously identified DOCK3 as being strongly upregulated in Duchenne muscular dystrophy (DMD), specifically in the skeletal muscles of DMD patients and dystrophic mice. Dock3 ubiquitous KO mice on the dystrophin-deficient background exacerbated skeletal muscle and cardiac phenotypes. We generated Dock3 conditional skeletal muscle knockout mice (Dock3 mKO) to characterize the role of DOCK3 protein exclusively in the adult muscle lineage. Dock3 mKO mice presented with significant hyperglycemia and increased fat mass, indicating a metabolic role in the maintenance of skeletal muscle health. Dock3 mKO mice had impaired muscle architecture, reduced locomotor activity, impaired myofiber regeneration, and metabolic dysfunction. We identified a novel DOCK3 interaction with SORBS1 through the C-terminal domain of DOCK3 that may account for its metabolic dysregulation. Together, these findings demonstrate an essential role for DOCK3 in skeletal muscle independent of DOCK3 function in neuronal lineages.


Assuntos
Metabolismo dos Carboidratos , Distrofia Muscular de Duchenne , Humanos , Adulto , Animais , Camundongos , Músculo Esquelético , Encéfalo , Camundongos Knockout , Glucose , Proteínas do Tecido Nervoso , Fatores de Troca do Nucleotídeo Guanina/genética
3.
Curr Opin Pediatr ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39297696

RESUMO

PURPOSE OF REVIEW: A growing number of gene therapies are getting FDA-approved for pediatric rare disorders to treat once incurable diseases. Opportunities for preventing lifetime illness and improving quality of life for these patients is now becoming a reality. Challenges exist in navigating the complexities of determining which patients will benefit from these new gene therapies and how to effectively deliver them as a standard of care. RECENT FINDINGS: Gene therapies have been approved for pediatric hematological, neuromuscular, cancer, and other disorders that have improved the quality of life for rare disease patients. FDA approval of these drugs has been on a case-by-case basis leading towards gaps in drug approval, physician and patient knowledge of new gene therapies, and ultimate delivery of these drugs. Identifying patients that would benefit from these drugs and other coordination of care issues have arisen with each unique gene therapy product. These gene therapies have unique requirements and patient indications that require a knowledgeable group of physicians and hospital administrators to incorporate their use as a standard of care. With more gene therapies on the near horizon for FDA approval, multidisciplinary teams may improve patient access to these drugs by streamlining approaches towards adapting gene therapies into clinical use. SUMMARY: The rapid increase in the number of FDA-approved gene therapies has not only created a number of challenges but also opportunities to improve the lives of pediatric patients with rare disorders. The adaptability of physicians, hospitals, and governmental regulatory boards is essential for delivering these new gene therapies safely and efficiently to these rare disease patients. Challenges still remain as to future requirements for additional gene therapy dosing and how to best manage financial burdens placed on the patient and providing institution.

4.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791164

RESUMO

Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.


Assuntos
Músculo Esquelético , Insuficiência Renal Crônica , Sarcopenia , Humanos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/etiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Animais , Sarcopenia/metabolismo , Sarcopenia/patologia , Sarcopenia/etiologia
5.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273260

RESUMO

Chronic kidney disease (CKD) is associated with various pathologic changes, including elevations in serum phosphate levels (hyperphosphatemia), vascular calcification, and skeletal muscle atrophy. Elevated phosphate can damage vascular smooth muscle cells and cause vascular calcification. Here, we determined whether high phosphate can also affect skeletal muscle cells and whether hyperphosphatemia, in the context of CKD or by itself, is associated with skeletal muscle atrophy. As models of hyperphosphatemia with CKD, we studied mice receiving an adenine-rich diet for 14 weeks and mice with deletion of Collagen 4a3 (Col4a3-/-). As models of hyperphosphatemia without CKD, we analyzed mice receiving a high-phosphate diet for three and six months as well as a genetic model for klotho deficiency (kl/kl). We found that adenine, Col4a3-/-, and kl/kl mice have reduced skeletal muscle mass and function and develop atrophy. Mice on a high-phosphate diet for six months also had lower skeletal muscle mass and function but no significant signs of atrophy, indicating less severe damage compared with the other three models. To determine the potential direct actions of phosphate on skeletal muscle, we cultured primary mouse myotubes in high phosphate concentrations, and we detected the induction of atrophy. We conclude that in experimental mouse models, hyperphosphatemia is sufficient to induce skeletal muscle atrophy and that, among various other factors, elevated phosphate levels might contribute to skeletal muscle injury in CKD.


Assuntos
Hiperfosfatemia , Músculo Esquelético , Atrofia Muscular , Fosfatos , Animais , Hiperfosfatemia/patologia , Camundongos , Atrofia Muscular/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/etiologia , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Fosfatos/sangue , Fosfatos/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Modelos Animais de Doenças , Camundongos Knockout , Masculino , Colágeno Tipo IV/metabolismo , Colágeno Tipo IV/genética , Camundongos Endogâmicos C57BL , Proteínas Klotho/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia
6.
Hum Mutat ; 43(9): 1149-1161, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35544951

RESUMO

The Dedicator of Cytokinesis (DOCK) family (DOCK1-11) of genes are essential mediators of cellular migration, growth, and fusion in a variety of cell types and tissues. Recent advances in whole-genome sequencing of patients with undiagnosed genetic disorders have identified several rare pathogenic variants in DOCK genes. We conducted a systematic review and performed a patient database and literature search of reported DOCK pathogenic variants that have been identified in association with clinical pathologies such as global developmental delay, immune cell dysfunction, muscle hypotonia, and muscle ataxia among other categories. We then categorized these pathogenic DOCK variants and their associated clinical phenotypes under several unique categories: developmental, cardiovascular, metabolic, cognitive, or neuromuscular. Our systematic review of DOCK variants aims to identify and analyze potential DOCK-regulated networks associated with neuromuscular diseases and other disease pathologies, which may identify novel therapeutic strategies and targets. This systematic analysis and categorization of human-associated pathologies with DOCK pathogenic variants is the first report to the best of our knowledge for a unique class in this understudied gene family that has important implications in furthering personalized genomic medicine, clinical diagnoses, and improve targeted therapeutic outcomes across many clinical pathologies.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Deficiência Intelectual , Ataxia , Genômica , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Deficiência Intelectual/genética , Família Multigênica , Hipotonia Muscular/genética , Fatores de Transcrição
7.
Hum Mol Genet ; 29(17): 2855-2871, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32766788

RESUMO

DOCK3 is a member of the DOCK family of guanine nucleotide exchange factors that regulate cell migration, fusion and viability. Previously, we identified a dysregulated miR-486/DOCK3 signaling cascade in dystrophin-deficient muscle, which resulted in the overexpression of DOCK3; however, little is known about the role of DOCK3 in muscle. Here, we characterize the functional role of DOCK3 in normal and dystrophic skeletal muscle. Utilizing Dock3 global knockout (Dock3 KO) mice, we found that the haploinsufficiency of Dock3 in Duchenne muscular dystrophy mice improved dystrophic muscle pathologies; however, complete loss of Dock3 worsened muscle function. Adult Dock3 KO mice have impaired muscle function and Dock3 KO myoblasts are defective for myogenic differentiation. Transcriptomic analyses of Dock3 KO muscles reveal a decrease in myogenic factors and pathways involved in muscle differentiation. These studies identify DOCK3 as a novel modulator of muscle health and may yield therapeutic targets for treating dystrophic muscle symptoms.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , Distrofia Muscular de Duchenne/genética , Proteínas do Tecido Nervoso/genética , Animais , Diferenciação Celular/genética , Movimento Celular/genética , Sobrevivência Celular/genética , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Mioblastos/metabolismo , Transcriptoma/genética
8.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886863

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease characterized by skeletal muscle instability, progressive muscle wasting, and fibrosis. A major driver of DMD pathology stems from aberrant upregulation of transforming growth factor ß (TGFß) signaling. In this report, we investigated the major transducers of TGFß signaling, i.e., receptor Smads (R-Smads), in DMD patient skeletal muscle and observed a 48-fold increase in Smad8 mRNA. Smad1, Smad2, Smad3, and Smad5 mRNA were only minimally increased. A similar pattern was observed in the muscle from the mdx5cv mouse. Western blot analysis showed upregulation of phosphorylated Smad1, Smad5, and Smad8 compared to total Smad indicating activation of this pathway. In parallel, we observed a profound diminishment of muscle-enriched microRNAs (myomiRs): miR-1, miR-133a, and miR-133b. The pattern of Smad8 induction and myomiR suppression was recapitulated in C2C12 muscle cells after stimulation with bone morphogenetic protein 4 (BMP4), a signaling factor that we found upregulated in DMD muscle. Silencing Smad8 in C2C12 myoblasts derepressed myomiRs and promoted myoblast differentiation; there was also a concomitant upregulation of myogenic regulatory factors (myogenin and myocyte enhancer factor 2D) and suppression of a pro-inflammatory cytokine (interleukin-6). Our data suggest that Smad8 is a negative regulator of miR-1, miR-133a, and miR-133b in muscle cells and that the BMP4-Smad8 axis is a driver of dystrophic pathology in DMD.


Assuntos
MicroRNAs , Distrofia Muscular de Duchenne , Proteína Smad8 , Animais , Camundongos , Camundongos Endogâmicos mdx , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , RNA Mensageiro/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
Am J Physiol Cell Physiol ; 321(2): C230-C246, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33979214

RESUMO

The MDX mouse is an animal model of Duchenne muscular dystrophy, a human disease marked by an absence of the cytoskeletal protein, dystrophin. We hypothesized that 1) dystrophin serves a complex mechanical role in skeletal muscles by contributing to passive compliance, viscoelastic properties, and contractile force production and 2) age is a modulator of passive mechanics of skeletal muscles of the MDX mouse. Using an in vitro biaxial mechanical testing apparatus, we measured passive length-tension relationships in the muscle fiber direction as well as transverse to the fibers, viscoelastic stress-relaxation curves, and isometric contractile properties. To avoid confounding secondary effects of muscle necrosis, inflammation, and fibrosis, we used very young 3-wk-old mice whose muscles reflected the prefibrotic and prenecrotic state. Compared with controls, 1) muscle extensibility and compliance were greater in both along fiber direction and transverse to fiber direction in MDX mice and 2) the relaxed elastic modulus was greater in dystrophin-deficient diaphragms. Furthermore, isometric contractile muscle stress was reduced in the presence and absence of transverse fiber passive stress. We also examined the effect of age on the diaphragm length-tension relationships and found that diaphragm muscles from 9-mo-old MDX mice were significantly less compliant and less extensible than those of muscles from very young MDX mice. Our data suggest that the age of the MDX mouse is a determinant of the passive mechanics of the diaphragm; in the prefibrotic/prenecrotic stage, muscle extensibility and compliance, as well as viscoelasticity, and muscle contractility are altered by loss of dystrophin.


Assuntos
Distrofina/deficiência , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animais , Modelos Animais de Doenças , Contração Isométrica/fisiologia , Camundongos Transgênicos , Distrofia Muscular de Duchenne/fisiopatologia
10.
J Biol Chem ; 295(20): 6946-6957, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32265301

RESUMO

The incidence of pancreatic cancer increases with age, suggesting that chronological aging is a significant risk factor for this disease. Fibroblasts are the major nonmalignant cell type in the stroma of human pancreatic ductal adenocarcinoma (PDAC). In this study, we investigated whether the chronological aging of normal human fibroblasts (NHFs), a previously underappreciated area in pancreatic cancer research, influences the progression and therapeutic outcomes of PDAC. Results from experiments with murine xenografts and 2D and 3D co-cultures of NHFs and PDAC cells revealed that older NHFs stimulate proliferation of and confer resistance to radiation therapy of PDAC. MS-based metabolite analysis indicated that older NHFs have significantly increased arachidonic acid 12-lipoxygenase (ALOX12) expression and elevated levels of its mitogenic metabolite, 12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12-(S)-HETE) compared with their younger counterparts. In co-cultures with older rather than with younger NHFs, PDAC cells exhibited increases in mitogen-activated protein kinase signaling and cellular metabolism, as well as a lower oxidation state that correlated with their enhanced proliferation and resistance to radiation therapy. Expression of ALOX12 was found to be significantly lower in PDAC cell lines and tumor biopsies, suggesting that PDAC cells rely on a stromal supply of mitogens for their proliferative needs. Pharmacological (hydroxytyrosol) and molecular (siRNA) interventions of ALOX12 in older NHFs suppressed their ability to stimulate proliferation of PDAC cells. We conclude that chronological aging of NHFs contributes to PDAC progression and that ALOX12 and 12-(S)-HETE may be potential stromal targets for interventions that seek to halt progression and improve therapy outcomes.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Senescência Celular , Ácidos Hidroxieicosatetraenoicos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Araquidonato 12-Lipoxigenase/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Camundongos , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células Estromais/metabolismo , Células Estromais/patologia
11.
Hum Mol Genet ; 28(14): 2365-2377, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31267131

RESUMO

MEGF10 myopathy is a rare inherited muscle disease that is named after the causative gene, MEGF10. The classic phenotype, early onset myopathy, areflexia, respiratory distress and dysphagia, is severe and immediately life-threatening. There are no disease-modifying therapies. We performed a small molecule screen and follow-up studies to seek a novel therapy. A primary in vitro drug screen assessed cellular proliferation patterns in Megf10-deficient myoblasts. Secondary evaluations were performed on primary screen hits using myoblasts derived from Megf10-/- mice, induced pluripotent stem cell-derived myoblasts from MEGF10 myopathy patients, mutant Drosophila that are deficient in the homologue of MEGF10 (Drpr) and megf10 mutant zebrafish. The screen yielded two promising candidates that are both selective serotonin reuptake inhibitors (SSRIs), sertraline and escitalopram. In depth follow-up analyses demonstrated that sertraline was highly effective in alleviating abnormalities across multiple models of the disease including mouse myoblast, human myoblast, Drosophila and zebrafish models. Sertraline also restored deficiencies of Notch1 in disease models. We conclude that SSRIs show promise as potential therapeutic compounds for MEGF10 myopathy, especially sertraline. The mechanism of action may involve the Notch pathway.


Assuntos
Proteínas de Membrana/genética , Doenças Musculares/tratamento farmacológico , Mioblastos/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Sertralina/uso terapêutico , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Citalopram/farmacologia , Citalopram/uso terapêutico , Drosophila/efeitos dos fármacos , Drosophila/genética , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Mutação , Mioblastos/metabolismo , Receptor Notch1/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/farmacologia , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
12.
Muscle Nerve ; 63(6): 928-940, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33651408

RESUMO

INTRODUCTION: RNA-binding proteins (RBPs) play an important role in skeletal muscle development and disease by regulating RNA splicing. In myotonic dystrophy type 1 (DM1), the RBP MBNL1 (muscleblind-like) is sequestered by toxic CUG repeats, leading to missplicing of MBNL1 targets. Mounting evidence from the literature has implicated other factors in the pathogenesis of DM1. Herein we sought to evaluate the functional role of the splicing factor hnRNP L in normal and DM1 muscle cells. METHODS: Co-immunoprecipitation assays using hnRNPL and MBNL1 expression constructs and splicing profiling in normal and DM1 muscle cell lines were performed. Zebrafish morpholinos targeting hnrpl and hnrnpl2 were injected into one-cell zebrafish for developmental and muscle analysis. In human myoblasts downregulation of hnRNP L was achieved with shRNAi. Ascochlorin administration to DM1 myoblasts was performed and expression of the CUG repeats, DM1 splicing biomarkers, and hnRNP L expression levels were evaluated. RESULTS: Using DM1 patient myoblast cell lines we observed the formation of abnormal hnRNP L nuclear foci within and outside the expanded CUG repeats, suggesting a role for this factor in DM1 pathology. We showed that the antiviral and antitumorigenic isoprenoid compound ascochlorin increased MBNL1 and hnRNP L expression levels. Drug treatment of DM1 muscle cells with ascochlorin partially rescued missplicing of established early biomarkers of DM1 and improved the defective myotube formation displayed by DM1 muscle cells. DISCUSSION: Together, these studies revealed that hnRNP L can modulate DM1 pathologies and is a potential therapeutic target.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Distrofia Miotônica/genética , Adulto , Animais , Linhagem Celular , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mioblastos/patologia , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Peixe-Zebra
13.
Mol Ther ; 28(1): 189-201, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31628052

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked muscle wasting disease that is caused by the loss of functional dystrophin protein in cardiac and skeletal muscles. DMD patient muscles become weakened, leading to eventual myofiber breakdown and replacement with fibrotic and adipose tissues. Inflammation drives the pathogenic processes through releasing inflammatory cytokines and other factors that promote skeletal muscle degeneration and contributing to the loss of motor function. Selective inhibitors of nuclear export (SINEs) are a class of compounds that function by inhibiting the nuclear export protein exportin 1 (XPO1). The XPO1 protein is an important regulator of key inflammatory and neurological factors that drive inflammation and neurotoxicity in various neurological and neuromuscular diseases. Here, we demonstrate that SINE compound KPT-350 can ameliorate dystrophic-associated pathologies in the muscles of DMD models of zebrafish and mice. Thus, SINE compounds are a promising novel strategy for blocking dystrophic symptoms and could be used in combinatorial treatments for DMD.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Carioferinas/antagonistas & inibidores , Distrofia Muscular de Duchenne/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Peixe-Zebra/genética , Administração Oral , Animais , Biomarcadores/sangue , Citocinas/antagonistas & inibidores , Citocinas/sangue , Modelos Animais de Doenças , Locomoção/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos DBA , Camundongos Endogâmicos mdx , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Proteínas de Peixe-Zebra/genética , Proteína Exportina 1
14.
Proc Natl Acad Sci U S A ; 114(23): 6080-6085, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533404

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by X-linked inherited mutations in the DYSTROPHIN (DMD) gene. Absence of dystrophin protein from the sarcolemma causes severe muscle degeneration, fibrosis, and inflammation, ultimately leading to cardiorespiratory failure and premature death. Although there are several promising strategies under investigation to restore dystrophin protein expression, there is currently no cure for DMD, and identification of genetic modifiers as potential targets represents an alternative therapeutic strategy. In a Brazilian golden retriever muscular dystrophy (GRMD) dog colony, two related dogs demonstrated strikingly mild dystrophic phenotypes compared with those typically observed in severely affected GRMD dogs despite lacking dystrophin. Microarray analysis of these "escaper" dogs revealed reduced expression of phosphatidylinositol transfer protein-α (PITPNA) in escaper versus severely affected GRMD dogs. Based on these findings, we decided to pursue investigation of modulation of PITPNA expression on dystrophic pathology in GRMD dogs, dystrophin-deficient sapje zebrafish, and human DMD myogenic cells. In GRMD dogs, decreased expression of Pitpna was associated with increased phosphorylated Akt (pAkt) expression and decreased PTEN levels. PITPNA knockdown by injection of morpholino oligonucleotides in sapje zebrafish also increased pAkt, rescued the abnormal muscle phenotype, and improved long-term sapje mutant survival. In DMD myotubes, PITPNA knockdown by lentiviral shRNA increased pAkt and increased myoblast fusion index. Overall, our findings suggest PIPTNA as a disease modifier that accords benefits to the abnormal signaling, morphology, and function of dystrophic skeletal muscle, and may be a target for DMD and related neuromuscular diseases.


Assuntos
Distrofia Muscular de Duchenne/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/fisiologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Cães , Distrofina/genética , Distrofina/metabolismo , Humanos , Células Musculares/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/fisiopatologia , Mutação , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Peixe-Zebra/metabolismo
15.
Muscle Nerve ; 57(1): 6-15, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28877560

RESUMO

Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes, including age of loss of ambulation, steroid responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. This review highlights recent findings on genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. Muscle Nerve 57: 6-15, 2018.


Assuntos
Distrofia Muscular de Duchenne/genética , Distrofia Muscular Facioescapuloumeral/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Terapia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular Facioescapuloumeral/tratamento farmacológico , Distrofia Muscular Facioescapuloumeral/fisiopatologia
16.
Physiol Genomics ; 48(11): 850-860, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27764767

RESUMO

Sapje zebrafish lack the protein dystrophin and are the smallest vertebrate model of Duchenne muscular dystrophy (DMD). Their small size makes them ideal for large-scale drug discovery screens. However, the extent that sapje mimic the muscle dysfunction of higher vertebrate models of DMD is unclear. We used an optical birefringence assay to differentiate affected dystrophic sapje larvae from their unaffected siblings and then studied trunk muscle contractility at 4-7 days postfertilization. Preparation cross-sectional area (CSA) was similar for affected and unaffected larvae, yet tetanic forces of affected preparations were only 30-60% of normal. ANCOVA indicated that the linear relationship observed between tetanic force and CSA for unaffected preparations was absent in the affected population. Consequently, the average force/CSA of affected larvae was depressed 30-70%. Disproportionate reductions in twitch vs. tetanic force, and a slowing of twitch tension development and relaxation, indicated that the myofibrillar disorganization evident in the birefringence assay could not explain the entire force loss. Single eccentric contractions, in which activated preparations were lengthened 5-10%, resulted in tetanic force deficits in both groups of larvae. However, deficits of affected preparations were three- to fivefold greater at all strains and ages, even after accounting for any recovery. Based on these functional assessments, we conclude that the sapje mutant zebrafish is a phenotypically severe model of DMD. The severe contractile deficits of sapje larvae represent novel physiological endpoints for therapeutic drug screening.


Assuntos
Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Peixe-Zebra/fisiologia , Animais , Modelos Animais de Doenças , Cinética , Contração Muscular , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Análise de Regressão , Sarcômeros/metabolismo , Tetania/fisiopatologia
17.
Hum Mol Genet ; 23(7): 1869-78, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24234649

RESUMO

Duchenne muscular dystrophy (DMD) is caused by a lack of the dystrophin protein and has no effective treatment at present. Zebrafish provide a powerful in vivo tool for high-throughput therapeutic drug screening for the improvement of muscle phenotypes caused by dystrophin deficiency. Using the dystrophin-deficient zebrafish, sapje, we have screened a total of 2640 compounds with known modes of action from three drug libraries to identify modulators of the disease progression. Six compounds that target heme oxygenase signaling were found to rescue the abnormal muscle phenotype in sapje and sapje-like, while upregulating the inducible heme oxygenase 1 (Hmox1) at the protein level. Direct Hmox1 overexpression by injection of zebrafish Hmox1 mRNA into fertilized eggs was found to be sufficient for a dystrophin-independent restoration of normal muscle via an upregulation of cGMP levels. In addition, treatment of mdx(5cv) mice with the PDE5 inhibitor, sildenafil, which was one of the six drugs impacting the Hmox1 pathway in zebrafish, significantly increased the expression of Hmox1 protein, thus making Hmox1 a novel target for the improvement of dystrophic symptoms. These results demonstrate the translational relevance of our zebrafish model to mammalian models and support the use of zebrafish to screen for new drugs to treat human DMD. The discovery of a small molecule and a specific therapeutic pathway that might mitigate DMD disease progression could lead to significant clinical implications.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Distrofina/genética , Heme Oxigenase-1/biossíntese , Distrofia Muscular de Duchenne/tratamento farmacológico , Animais , GMP Cíclico/biossíntese , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Distrofina/deficiência , Heme Oxigenase-1/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/farmacologia , Purinas/farmacologia , RNA Mensageiro/genética , Transdução de Sinais/genética , Citrato de Sildenafila , Sulfonas/farmacologia , Regulação para Cima , Peixe-Zebra/genética
18.
J Cell Sci ; 126(Pt 12): 2678-91, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23606743

RESUMO

Skeletal muscle possesses a strong ability to regenerate following injury, a fact that has been largely attributed to satellite cells. Satellite cells are skeletal muscle stem cells located beneath the basal lamina of the myofiber, and are the principal cellular source of growth and regeneration in skeletal muscle. MicroRNAs (miRNAs) play key roles in modulating several cellular processes by targeting multiple mRNAs that comprise a single or multiple signaling pathway. Several miRNAs have been shown to regulate satellite cell activity, such as miRNA-489, which functions to maintain satellite cells in a quiescent state. Although muscle-specific miRNAs have been identified, many of the molecular mechanisms that regulate myogenesis that are regulated by miRNAs still remain unknown. In this study, we have shown that miR-128a is highly expressed in brain and skeletal muscle, and increases during myoblast differentiation. MiR-128a was found to regulate the target genes involved in insulin signaling, which include Insr (insulin receptor), Irs1 (insulin receptor substrate 1) and Pik3r1 (phosphatidylinositol 3-kinases regulatory 1) at both the mRNA and protein level. Overexpression of miR-128a in myoblasts inhibited cell proliferation by targeting IRS1. By contrast, inhibition of miR-128a induced myotube maturation and myofiber hypertrophy in vitro and in vivo. Moreover, our results demonstrate that miR-128a expression levels are negatively controlled by tumor necrosis factor α (TNF-α). TNF-α promoted myoblast proliferation and myotube hypertrophy by facilitating IRS1/Akt signaling via a direct decrease of miR-128a expression in both myoblasts and myotubes. In summary, we demonstrate that miR-128a regulates myoblast proliferation and myotube hypertrophy, and provides a novel mechanism through which IRS1-dependent insulin signaling is regulated in skeletal muscle.


Assuntos
Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/metabolismo , MicroRNAs/metabolismo , Desenvolvimento Muscular/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Diferenciação Celular/genética , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Feminino , Hipertrofia/genética , Hipertrofia/metabolismo , Hipertrofia/patologia , Insulina/genética , Proteínas Substratos do Receptor de Insulina/genética , Camundongos , MicroRNAs/genética , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , Mioblastos/fisiologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Proc Natl Acad Sci U S A ; 108(13): 5331-6, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21402949

RESUMO

Two known zebrafish dystrophin mutants, sapje and sapje-like (sap(c/100)), represent excellent small-animal models of human muscular dystrophy. Using these dystrophin-null zebrafish, we have screened the Prestwick chemical library for small molecules that modulate the muscle phenotype in these fish. With a quick and easy birefringence assay, we have identified seven small molecules that influence muscle pathology in dystrophin-null zebrafish without restoration of dystrophin expression. Three of seven candidate chemicals restored normal birefringence and increased survival of dystrophin-null fish. One chemical, aminophylline, which is known to be a nonselective phosphodiesterase (PDE) inhibitor, had the greatest ability to restore normal muscle structure and up-regulate the cAMP-dependent PKA pathway in treated dystrophin-deficient fish. Moreover, other PDE inhibitors also reduced the percentage of affected sapje fish. The identification of compounds, especially PDE inhibitors, that moderate the muscle phenotype in these dystrophin-null zebrafish validates the screening protocol described here and may lead to candidate molecules to be used as therapeutic interventions in human muscular dystrophy.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Distrofina/genética , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/fisiopatologia , Preparações Farmacêuticas , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Distrofina/metabolismo , Humanos , Distrofia Muscular de Duchenne/patologia , Oligonucleotídeos Antissenso , Fenótipo , Bibliotecas de Moléculas Pequenas , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA