Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(52): 112695-112709, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837596

RESUMO

Salinity stress is a major threat to crop growth and productivity. Millets are stress-tolerant crops that can withstand the environmental constraints. Foxtail millet is widely recognized as a drought and salinity-tolerant crop owing to its efficient ROS scavenging mechanism. Ascorbate peroxidase (APX) is one of the reactive oxygen species (ROS) scavenging enzymes that leads to hydrogen peroxide (H2O2) detoxification and stabilization of the internal biochemical state of the cell under stress. This inherent capacity of the APX enzyme can further be enhanced by the application of an external mitigant. This study focuses on the impact of salt (NaCl) and selenium (Se) application on the APX enzyme activity of foxtail millet using in silico and in-vitro techniques and mRNA expression studies. The NaCl was applied in the concentrations, i.e., 150 mM and 200 mM, while the Se was applied in 1 µM, 5 µM, and 10 µM concentrations. The in silico studies involved three-dimensional structure modeling and molecular docking. The in vitro studies comprised the morphological and biochemical parameters, alongside mRNA expression studies in foxtail millet under NaCl stress and Se applications. The in silico studies revealed that the APX enzyme showed better interaction with Se as compared to NaCl, thus suggesting the enzyme-modulating role of Se. The morphological and biochemical analysis indicated that Se alleviated the NaCl (150 mM and 200 mM) and induced symptoms at 1 µM as compared to 5 and 10 µM by enhancing the morphological parameters, upregulating the gene expression and enzyme activity of APX, and ultimately reducing the H2O2 content significantly. The transcriptomic studies confirmed the upregulation of chloroplastic APX in response to salt stress and selenium supplementation. Hence, it can be concluded that Se as a mitigant at lower concentrations can alleviate NaCl stress in foxtail millet.


Assuntos
Selênio , Setaria (Planta) , Selênio/farmacologia , Selênio/metabolismo , Setaria (Planta)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Simulação de Acoplamento Molecular , Cloreto de Sódio/metabolismo , Estresse Salino , Antioxidantes/metabolismo , Suplementos Nutricionais , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Sci Rep ; 10(1): 14358, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873883

RESUMO

Diatoms are the largest group of heterokont algae with more than 100,000 species. As one of the single-celled photosynthetic organisms that inhabit marine, aquatic and terrestrial ecosystems, diatoms contribute ~ 45% of global primary production. Despite their ubiquity and environmental significance, very few diatom plastid genomes (plastomes) have been sequenced and studied. This study explored patterns of nucleotide substitution rates of diatom plastids across the entire suite of plastome protein-coding genes for 40 taxa representing the major clades. The highest substitution rate was lineage-specific within the araphid 2 taxon Astrosyne radiata and radial 2 taxon Proboscia sp. Rate heterogeneity was also evident in different functional classes and individual genes. Similar to land plants, proteins genes involved in photosynthetic metabolism have lower synonymous and nonsynonymous substitutions rates than those involved in transcription and translation. Significant positive correlations were identified between substitution rates and measures of genomic rearrangements, including indels and inversions, which is a similar result to what was found in legume plants. This work advances the understanding of the molecular evolution of diatom plastomes and provides a foundation for future studies.


Assuntos
Sequência de Bases/genética , Diatomáceas/citologia , Genomas de Plastídeos , Nucleotídeos/genética , Plastídeos/genética , Proteínas/genética , Diatomáceas/genética , Ecossistema , Evolução Molecular , Ordem dos Genes , Genes Essenciais , Heterogeneidade Genética , Sequências Repetidas Invertidas , Fotossíntese/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA