Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mar Drugs ; 20(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35323462

RESUMO

The COVID-19 pandemic and its continuing emerging variants emphasize the need to discover appropriate treatment, where vaccines alone have failed to show complete protection against the new variants of the virus. Therefore, treatment of the infected cases is critical. This paper discusses the bio-guided isolation of three indole diketopiperazine alkaloids, neoechinulin A (1), echinulin (2), and eurocristatine (3), from the Red Sea-derived Aspergillus fumigatus MR2012. Neoechinulin A (1) exhibited a potent inhibitory effect against SARS-CoV-2 Mpro with IC50 value of 0.47 µM, which is comparable to the reference standard GC376. Despite the structural similarity between the three compounds, only 1 showed a promising effect. The mechanism of inhibition is discussed in light of a series of extensive molecular docking, classical and steered molecular dynamics simulation experiments. This paper sheds light on indole diketopiperazine alkaloids as a potential structural motif against SARS-CoV-2 Mpro. Additionally, it highlights the potential of different molecular docking and molecular dynamics simulation approaches in the discrimination between active and inactive structurally related Mpro inhibitors.


Assuntos
Antivirais/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/química , Alcaloides Indólicos/química , Piperazinas/química , SARS-CoV-2/enzimologia , Alcaloides/química , Alcaloides/isolamento & purificação , Antivirais/isolamento & purificação , Aspergillus fumigatus/química , Inibidores de Cisteína Proteinase/isolamento & purificação , Alcaloides Indólicos/isolamento & purificação , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Piperazinas/isolamento & purificação
2.
J Enzyme Inhib Med Chem ; 36(1): 1334-1345, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34139914

RESUMO

Recent findings suggested several allosteric pockets on human aromatase that could be utilised for the development of new modulators able to inhibit this enzyme in a new mechanism. Herein, we applied an integrated in-silico-based approach supported by in-vitro enzyme-based and cell-based validation assays to select the best leads able to target these allosteric binding sites from a small library of plant-derived natural products. Chrysin, apigenin, and resveratrol were found to be the best inhibitors targeting the enzyme's substrate access channel and were able to produce a competitive inhibition with IC50 values ranged from 1.7 to 15.8 µM. Moreover, they showed a more potent antiproliferative effect against ER+ (MCF-7) than ER- one (MDA-MB-231) cell lines. On the other hand, both pomiferin and berberine were the best hits for the enzyme's haem-proximal cavity producing a non-competitive inhibition (IC50 15.1 and 21.4 µM, respectively) and showed selective antiproliferative activity towards MCF-7 cell lines.


Assuntos
Aromatase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Regulação Alostérica , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos
3.
Mar Drugs ; 19(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673168

RESUMO

Coculture is a productive technique to trigger microbes' biosynthetic capacity by mimicking the natural habitats' features principally by competition for food and space and interspecies cross-talks. Mixed cultivation of two Red Sea-derived actinobacteria, Actinokineospora spheciospongiae strain EG49 and Rhodococcus sp. UR59, resulted in the induction of several non-traced metabolites in their axenic cultures, which were detected using LC-HRMS metabolomics analysis. Antimalarial guided isolation of the cocultured fermentation led to the isolation of the angucyclines actinosporins E (1), H (2), G (3), tetragulol (5) and the anthraquinone capillasterquinone B (6), which were not reported under axenic conditions. Interestingly, actinosporins were previously induced when the axenic culture of the Actinokineospora spheciospongiae strain EG49 was treated with signalling molecule N-acetyl-d-glucosamine (GluNAc); this finding confirmed the effectiveness of coculture in the discovery of microbial metabolites yet to be discovered in the axenic fermentation with the potential that could be comparable to adding chemical signalling molecules in the fermentation flask. The isolated angucycline and anthraquinone compounds exhibited in vitro antimalarial activity and good biding affinity against lysyl-tRNA synthetase (PfKRS1), highlighting their potential developability as new antimalarial structural motif.


Assuntos
Actinobacteria/metabolismo , Antimaláricos/isolamento & purificação , Metabolômica , Rhodococcus/metabolismo , Antraquinonas/isolamento & purificação , Antraquinonas/farmacologia , Antimaláricos/farmacologia , Cromatografia Líquida , Técnicas de Cocultura , Fermentação , Oceano Índico , Espectrometria de Massas
4.
Mikrochim Acta ; 188(6): 199, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34041585

RESUMO

Since the COVID-19 disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) was declared a pandemic, it has spread rapidly, causing one of the most serious outbreaks in the last century. Reliable and rapid diagnostic tests for COVID-19 are crucial to control and manage the outbreak. Here, a label-free square wave voltammetry-based biosensing platform for the detection of SARS-CoV-2 in nasopharyngeal samples is reported. The sensor was constructed on screen-printed carbon electrodes coated with gold nanoparticles. The electrodes were functionalized using 11-mercaptoundecanoic acid (MUA) which was used for the immobilization of an antibody against SARS-CoV-2 nucleocapsid protein (N protein). The binding of the immunosensor with the N protein caused a change in the electrochemical signal. The detection was realised by measuring the change in reduction peak current of a redox couple using square wave voltammetry at 0.04 V versus Ag ref. electrode on the immunosensor upon binding with the N protein. The electrochemical immunosensor showed high sensitivity with a linear range from 1.0 pg.mL-1 to 100 ng.mL-1 and a limit of detection of 0.4 pg.mL-1 for the N protein in PBS buffer pH 7.4. Moreover, the immunosensor did not exhibit significant response with other viruses such as HCoV, MERS-CoV, Flu A and Flu B, indicating the high selectivity of the sensor for SARS-CoV-2. However, cross reactivity of the biosensor with SARS-CoV is indicated, which gives ability of the sensor to detect both SARS-CoV and SARS-CoV-2. The biosensor was successfully applied to detect the SARS-CoV-2 virus in clinical samples showing good correlation between the biosensor response and the RT-PCR cycle threshold values. We believe that the capability of miniaturization, low-cost and fast response of the proposed label-free electrochemical immunosensor will facilitate the point-of-care diagnosis of COVID 19 and help prevent further spread of infection.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/análise , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , SARS-CoV-2/química , Anticorpos Imobilizados/imunologia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Teste para COVID-19/instrumentação , Carbono/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ácidos Graxos/química , Ouro/química , Humanos , Imunoensaio/instrumentação , Limite de Detecção , Nanopartículas Metálicas/química , Nasofaringe/virologia , Fosfoproteínas/análise , Fosfoproteínas/imunologia , Compostos de Sulfidrila/química
5.
Mikrochim Acta ; 188(4): 137, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33763734

RESUMO

The novel corona (SARS-CoV-2) virus causes a global pandemic, which motivates researchers to develop reliable and effective methods for screening and detection of SARS-CoV-2. Though there are several methods available for the diagnosis of SARS-CoV-2 such as RT-PCR and ELSIA, nevertheless, these methods are time-consuming and may not apply at the point of care. In this study, we have developed a specific, sensitive, quantitative and fast detection method for SARS-CoV-2 by fluorescence resonance energy transfer (FRET) assay. The total extracellular protease proteolytic activity from the virus has been used as the biomarker. The specific peptide sequences from the library of 115 dipeptides were identified via changes in the fluorescence signal. The fluorogenic dipeptide substrates have the fluorophore and a quencher at the N- and the C- terminals, respectively. When the protease hydrolyzes the peptide bond between the two specific amino acids, it leads to a significant increase in the fluorescence signals. The specific fluorogenic peptide (H-d) produces a high fluorescence signal. A calibration plot was obtained from the changes in the fluorescence intensity against the different concentrations of the viral protease. The lowest limit of detection of this method was 9.7 ± 3 pfu/mL. The cross-reactivity of the SARS-CoV-2-specific peptide was tested against the MERS-CoV which does not affect the fluorescence signal. A significant change in the fluorescence signal with patient samples indicates that this FRET-based assay might be applied for the diagnosis of SARS-CoV-2 patients. Graphical abstract.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Proteases 3C de Coronavírus/metabolismo , Corantes Fluorescentes/metabolismo , Peptídeos/metabolismo , SARS-CoV-2 , Proteínas Virais/metabolismo , Animais , Bioensaio , COVID-19/microbiologia , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência , Humanos , Biblioteca de Peptídeos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero , Ensaio de Placa Viral
6.
Molecules ; 26(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062737

RESUMO

SARS CoV-2 pandemic is still considered a global health disaster, and newly emerged variants keep growing. A number of promising vaccines have been recently developed as a protective measure; however, cost-effective treatments are also of great importance to support this critical situation. Previously, betulinic acid has shown promising antiviral activity against SARS CoV via targeting its main protease. Herein, we investigated the inhibitory potential of this compound together with three other triterpene congeners (i.e., ursolic acid, maslinic acid, and betulin) derived from olive leaves against the viral main protease (Mpro) of the currently widespread SARS CoV-2. Interestingly, betulinic, ursolic, and maslinic acids showed significant inhibitory activity (IC50 = 3.22-14.55 µM), while betulin was far less active (IC50 = 89.67 µM). A comprehensive in-silico analysis (i.e., ensemble docking, molecular dynamic simulation, and binding-free energy calculation) was then performed to describe the binding mode of these compounds with the enzyme catalytic active site and determine the main essential structural features required for their inhibitory activity. Results presented in this communication indicated that this class of compounds could be considered as a promising lead scaffold for developing cost-effective anti-SARS CoV-2 therapeutics.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/farmacologia , SARS-CoV-2/enzimologia , Triterpenos/farmacologia , Antivirais/química , COVID-19/virologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Olea/química , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Triterpenos/química , Ácido Betulínico , Ácido Ursólico
7.
Mar Drugs ; 18(5)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380771

RESUMO

Liquid chromatography coupled with high resolution mass spectrometry (LC-HRESMS)-assisted metabolomic profiling of two sponge-associated actinomycetes, Micromonospora sp. UR56 and Actinokineospora sp. EG49, revealed that the co-culture of these two actinomycetes induced the accumulation of metabolites that were not traced in their axenic cultures. Dereplication suggested that phenazine-derived compounds were the main induced metabolites. Hence, following large-scale co-fermentation, the major induced metabolites were isolated and structurally characterized as the already known dimethyl phenazine-1,6-dicarboxylate (1), phenazine-1,6-dicarboxylic acid mono methyl ester (phencomycin; 2), phenazine-1-carboxylic acid (tubermycin; 3), N-(2-hydroxyphenyl)-acetamide (9), and p-anisamide (10). Subsequently, the antibacterial, antibiofilm, and cytotoxic properties of these metabolites (1-3, 9, and 10) were determined in vitro. All the tested compounds except 9 showed high to moderate antibacterial and antibiofilm activities, whereas their cytotoxic effects were modest. Testing against Staphylococcus DNA gyrase-B and pyruvate kinase as possible molecular targets together with binding mode studies showed that compounds 1-3 could exert their bacterial inhibitory activities through the inhibition of both enzymes. Moreover, their structural differences, particularly the substitution at C-1 and C-6, played a crucial role in the determination of their inhibitory spectra and potency. In conclusion, the present study highlighted that microbial co-cultivation is an efficient tool for the discovery of new antimicrobial candidates and indicated phenazines as potential lead compounds for further development as antibiotic scaffold.


Assuntos
Actinobacteria/metabolismo , Antibacterianos/farmacologia , Micromonospora/metabolismo , Poríferos/microbiologia , Inibidores da Topoisomerase II/farmacologia , Actinobacteria/isolamento & purificação , Animais , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/isolamento & purificação , Técnicas Bacteriológicas/métodos , Biofilmes/efeitos dos fármacos , DNA Girase/metabolismo , Ensaios Enzimáticos , Fermentação , Metabolômica/métodos , Testes de Sensibilidade Microbiana , Micromonospora/isolamento & purificação , Conformação Molecular , Simulação de Acoplamento Molecular , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/metabolismo , Staphylococcus/efeitos dos fármacos , Staphylococcus/enzimologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/isolamento & purificação , Inibidores da Topoisomerase II/metabolismo
8.
Molecules ; 25(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650478

RESUMO

Premna odorata Blanco (Lamiaceae) is an ethnomedicinal plant native to different tropical regions. Although some reports addressed their anti-inflammatory, cytotoxic, and antituberculotic effects, their hepatoprotective potential is yet to be discovered. Accordingly, this study investigated the crude extract and different fractions of the plant leaves; metabolic profiling using liquid chromatography/high-resolution electrospray ionization mass spectroscopy (LC-HRESIMS) analysis, in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties for the dereplicated metabolite via online PreADMET program, ROS scavenger activity on the Hep G2 human liver cancer cell line, and the possible hepatic cellular treatment effects in alcohol-inflamed liver female Wistar albino rats. Metabolic profiling dereplicated a total of 28 metabolites from the crude extract and its various fractions. In silico ADMET and ROS scavenger activity screening suggested plant metabolites are of potential bioactivity. In vivo hepatic treatment with crude, defatted crude, and n-hexane leave extracts suggested all extracts significantly improved liver damage, which was indicated by the reduction of elevated serum levels of bilirubin, AST, ALT, ALP, CRP, TNF-α, ICAM-1, VCAM-1, and MDA. The reduced levels of GSH and TAC were normalized during the study. Histological examinations of liver tissue showed collagen fiber distribution nearly back to its normal pattern. The anti-inflammatory and antioxidant potentials of Premna odorata extracts could be partly related to the combined effects of these phytochemicals or their synergistic interactions.


Assuntos
Anti-Inflamatórios , Antioxidantes , Doença Hepática Induzida por Substâncias e Drogas , Etanol/efeitos adversos , Lamiaceae/química , Fígado , Folhas de Planta/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Etanol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Polifenóis/química , Polifenóis/farmacologia , Ratos , Ratos Wistar , Terpenos/química , Terpenos/farmacologia
9.
Molecules ; 25(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276509

RESUMO

Hyaluronidase enzyme (HAase) has a role in the dissolution or disintegration of hyaluronic acid (HA) and in maintaining the heathy state of skin. Bioassay-guided fractionation of Ravenala madagascariensis (Sonn.) organ extracts (leaf, flower, stem, and root) testing for hyaluronidase inhibition was performed followed by metabolic profiling using LC-HRMS. Additionally, a hyaluronidase docking study was achieved using Molecular Operating Environment (MOE). Results showed that the crude hydroalcoholic (70% EtOH) extract of the leaves as well as its n-butanol (n-BuOH) partition showed higher HAase activity with 64.3% inhibition. Metabolic analysis of R. madagascariensis resulted in the identification of 19 phenolic compounds ranging from different chemical classes (flavone glycosides, flavonol glycosides, and flavanol aglycones). Bioassay-guided purification of the leaf n-BuOH partition led to the isolation of seven compounds that were identified as narcissin, rutin, epiafzelechin, epicatechin, isorhamnetin 7-O-glucoside, kaempferol, and isorhamnetin-7-O-rutinoside. The docking study showed that narcissin, rutin, and quercetin 3-O-glucoside all interact with HAase through hydrogen bonding with the Asp111, Gln271, and/or Glu113 residues. Our results highlight Ravenala madagascariensis and its flavonoids as promising hyaluronidase inhibitors in natural cosmetology preparations for skin care.


Assuntos
Bioensaio/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hialuronoglucosaminidase/antagonistas & inibidores , Metabolômica , Simulação de Acoplamento Molecular , Strelitziaceae/química , Inibidores Enzimáticos/isolamento & purificação , Metaboloma , Polifenóis/química , Termodinâmica
10.
Biotechnol Appl Biochem ; 65(3): 497-508, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29023994

RESUMO

Biosensors are devices that combine a biological material with a suitable platform for detection of pathogenic organisms, carcinogenic, mutagenic, and/or toxic chemicals or for reporting a biological effect. In recent years, an enormous number of different types of biosensors have been constructed and developed for several medical applications. The reason for that was primarily due to the numerous advantages and applications that can be offered by biosensors. This review article has been started with demonstrating the power of biosensor technologies versus analytical and conventional techniques. Subsequently, more emphasis has been added on the classification and the role of biosensors in several medical applications such as detection and monitoring of carcinogenic and mutagenic chemicals, reporting of endocrine disrupting compounds, and detection of pathogenic organisms. The most common reporter genes used in biosensors engineering and construction have also been summarized. Prospective strategies and recommendations for the future construction of biosensors have been highlighted.


Assuntos
Pesquisa Biomédica , Técnicas Biossensoriais , Carcinógenos/análise , Disruptores Endócrinos/análise , Mutagênicos/análise , Humanos
11.
Anal Biochem ; 525: 78-84, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28237255

RESUMO

Aptamers have shown a number of potential applications in sensing and therapeutic due to the high affinity and specificity towards their target molecules. Not all the nucleotides in the full length aptamers are involved in the binding with their targets. The non-binding domain of the aptamer may affect the binding affinity of the aptamer-target complex. Mapping the aptamer binding region could increase the affinity and the specificity. In this paper, we designed aptamer-based fluorescence sensors from a truncated progesterone (P4) aptamer. Then, fluorescein and quencher labelled aptamer complementary oligonucleotide sequences were hybridized to the truncated aptamer at different sites to form duplex structures. We used fluorescence-quencher pair displacement assay upon progesterone binding for the determination of P4. One of the truncated sequences has shown high binding affinity with 16 fold increase in the dissociation constant, Kd (2.1 nM) compared to the original aptamer. The aptasensor was highly selective for P4 against similar compounds such as 17-ß estradiol, bisphenol-A and vitamin D. The sensor has been applied for the detection of P4 in spiked tap water and in urine samples showing good recovery. This new developed aptamer-based fluorescence biosensor can be applied in food, pharmaceutical, and clinical industries.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Sondas de DNA/química , Fluorescência , Progesterona/análise , Urina/química , Água/química , Humanos , Urinálise
12.
Anal Chem ; 88(20): 10019-10027, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27617489

RESUMO

Continual monitoring of secreted biomarkers from organ-on-a-chip models is desired to understand their responses to drug exposure in a noninvasive manner. To achieve this goal, analytical methods capable of monitoring trace amounts of secreted biomarkers are of particular interest. However, a majority of existing biosensing techniques suffer from limited sensitivity, selectivity, stability, and require large working volumes, especially when cell culture medium is involved, which usually contains a plethora of nonspecific binding proteins and interfering compounds. Hence, novel analytical platforms are needed to provide noninvasive, accurate information on the status of organoids at low working volumes. Here, we report a novel microfluidic aptamer-based electrochemical biosensing platform for monitoring damage to cardiac organoids. The system is scalable, low-cost, and compatible with microfluidic platforms easing its integration with microfluidic bioreactors. To create the creatine kinase (CK)-MB biosensor, the microelectrode was functionalized with aptamers that are specific to CK-MB biomarker secreted from a damaged cardiac tissue. Compared to antibody-based sensors, the proposed aptamer-based system was highly sensitive, selective, and stable. The performance of the sensors was assessed using a heart-on-a-chip system constructed from human embryonic stem cell-derived cardiomyocytes following exposure to a cardiotoxic drug, doxorubicin. The aptamer-based biosensor was capable of measuring trace amounts of CK-MB secreted by the cardiac organoids upon drug treatments in a dose-dependent manner, which was in agreement with the beating behavior and cell viability analyses. We believe that, our microfluidic electrochemical biosensor using aptamer-based capture mechanism will find widespread applications in integration with organ-on-a-chip platforms for in situ detection of biomarkers at low abundance and high sensitivity.

13.
J Transl Med ; 14(1): 118, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27146902

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a heterogeneous disease with different molecular characteristics associated with many variables such as the sites from which the tumors originate or the presence or absence of chromosomal instability. Identification of such variables, particularly mutational hotspots, often carries a significant diagnostic and/or prognostic value that could ultimately affect the therapeutic outcome. METHODS: High-throughput mutational analysis of 99 CRC formalin-fixed and paraffin-embedded (FFPE) cases was performed using the Cancer Hotspots Panel (CHP) v2 on the Ion Torrent™ platform. Correlation with survival and other Clinicopathological parameters was performed using Fisher's exact test and Kaplan-Meier curve analysis. RESULTS: Targeted sequencing lead to the identification of frequent mutations in TP53 (65 %), APC (36 %), KRAS (35 %), PIK3CA (19 %), PTEN (13 %), EGFR (11 %), SMAD4 (11 %), and FBXW7 (7 %). Other genes harbored mutations at lower frequency. EGFR mutations were relatively frequent and significantly associated with young age of onset (p = 0.028). Additionally, EGFR or PIK3CA mutations were a marker for poor disease-specific survival in our cohort (p = 0.009 and p = 0.032, respectively). Interestingly, KRAS or PIK3CA mutations were significantly associated with poor disease-specific survival in cases with wild-type TP53 (p = 0.001 and p = 0.02, respectively). CONCLUSIONS: Frequent EGFR mutations in this cohort as well as the differential prognostic potential of KRAS and PIK3CA in the presence or absence of detectable TP53 mutations may serve as novel prognostic tools for CRC in patients from the Kingdom of Saudi Arabia. Such findings could help in the clinical decision-making regarding therapeutic intervention for individual patients and provide better diagnosis or prognosis in this locality.


Assuntos
Neoplasias Colorretais/genética , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação/genética , Bancos de Tecidos , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Prognóstico , Modelos de Riscos Proporcionais
14.
Anal Chem ; 87(2): 1075-82, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25486123

RESUMO

Rising progesterone (P4) levels in humans due to its overconsumption through hormonal therapy, food products, or drinking water can lead to many negative health effects. Thus, the simple and accurate assessment of P4 in both environmental and clinical samples is highly important to protect public health. In this work, we present the selection, identification, and characterization of ssDNA aptamers with high binding affinity to P4. The aptamers were selected in vitro from a single-stranded DNA library of 1.8 × 10(15) oligonucleotides showing dissociation constants (KD) in the low nanomolar range. The dissociation constant of the best aptamer, designated as P4G13, was estimated to be 17 nM by electrochemical impedance spectroscopy (EIS) as well as fluorometric assay. Moreover, the aptamer P4G13 did not show cross-reactivity to analogues similar to progesterone such as 17ß-estradiol (E2) and norethisterone (NET). An impedimetric aptasensor for progesterone was then fabricated based on the conformational change of P4G13 aptamer, immobilized on the gold electrode by self-assembly, upon binding to P4, which results in an increase in electron transfer resistance. Aptamer-complementary DNA (cDNA) oligonucleotides were tested to maximize the signal gain of the aptasensor after binding with progesterone. Significant signal enhancement was observed when the aptamer hybridized with a short complementary sequence at specific site was used instead of pure aptamer. This signal gain is likely due to the more significant conformational change of the aptamer-cDNA than the pure aptamer upon binding with P4, as confirmed by circular dichroism (CD) spectroscopy. The developed aptasensor exhibited a linear range for concentrations of P4 from 10 to 60 ng/mL with a detection limit of 0.90 ng/mL. Moreover, the aptasensor was applied in spiked tap water samples and showed good recovery percentages. The new selected progesterone aptamers can be exploited in further biosensing applications for environmental, clinical, and medical diagnostic purposes.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/química , Espectroscopia Dielétrica/métodos , Estradiol/análise , Progesterona/análise , Aptâmeros de Nucleotídeos/metabolismo , Primers do DNA/química , DNA de Cadeia Simples/metabolismo , Eletrodos , Estradiol/metabolismo , Humanos , Limite de Detecção , Progesterona/metabolismo
16.
J Biomol Struct Dyn ; 41(21): 11647-11656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755429

RESUMO

The current study aimed to expand on the recently published results and assess the inhibitory efficacy of aloin A against SARS CoV-2. In vitro testing of aloin A against SARS CoV-2 proteases (i.e., MPro and PLPro) showed weak to moderate activity (IC50 = 68.56 ± 1.13 µM and 24.77 ± 1.57 µM, respectively). However, aloin A was able to inhibit the replication of SARS CoV-2 in Vero E6 cells efficiently with an IC50 of 0.095 ± 0.022 µM. Depending on the reported poor permeability of aloin A alongside its insignificant protease inhibitory activities presented in this study, we ran a number of extensive virtual screenings and physics-based simulations to determine the compound's potential mode of action. As a result, RBD-ACE2 was identified as a key target for aloin A. Results from 600 ns-long molecular dynamics (MD) simulation experiments pointed to aloin A's role as an RBD-ACE2 destabilizer. Therefore, the results of this work may pave the way for further development of this scaffold and the eventual production of innovative anti-SARS CoV-2 medicines with several mechanisms of action.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave , Humanos , Enzima de Conversão de Angiotensina 2 , Simulação de Dinâmica Molecular , SARS-CoV-2 , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia
17.
Pharmaceutics ; 15(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38004511

RESUMO

This study aimed to develop a self-nanoemulsifying drug delivery system (SNE) for sinapic acid (SA) to improve its solubility and antiviral activity. Optimal components for the SA-SNE formulation were selected, including Labrafil as the oil, Cremophor EL as the surfactant, and Transcutol as the co-surfactant. The formulation was optimized using surface response design, and the optimized SA-SNE formulation exhibited a small globule size of 83.6 nm, high solubility up to 127.1 ± 3.3, and a 100% transmittance. In vitro release studies demonstrated rapid and high SA release from the formulation. Pharmacokinetic analysis showed improved bioavailability by 2.43 times, and the optimized SA-SNE formulation exhibited potent antiviral activity against SARS-CoV-2. The developed SA-SNE formulation can enhance SA's therapeutic efficacy by improving its solubility, bioavailability, and antiviral activity. Further in silico, modeling, and Gaussian accelerated molecular dynamics (GaMD)-based studies revealed that SA could interact with and inhibit the viral main protease (Mpro). This research contributes to developing effective drug delivery systems for poorly soluble drugs like SA, opening new possibilities for their application via nebulization in SARS-CoV-2 therapy.

18.
Biosensors (Basel) ; 12(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35448292

RESUMO

Simple, timely, and precise detection of SARS-CoV-2 in clinical samples and contaminated surfaces aids in lowering attendant morbidity/mortality related to this infectious virus. Currently applied diagnostic techniques depend on a timely laboratory report following PCR testing. However, the application of these tests is associated with inherent shortcomings due to the need for trained personnel, long-time centralized laboratories, and expensive instruments. Therefore, there is an interest in developing biosensing diagnostic frontiers that can help in eliminating these shortcomings with a relatively economical, easy-to-use, well-timed, precise and sensitive technology. This study reports the development of fabricated Q-tips designed to qualitatively and semi-quantitatively detect SARS-CoV-2 in clinical samples and contaminated non-absorbable surfaces. This colorimetric sensor is engineered to sandwich SARS-CoV-2 spike protein between the lactoferrin general capturing agent and the complementary ACE2-labeled receptor. The ACE2 receptor is decorated with an orange-colored polymeric nanoparticle to generate an optical visual signal upon pairing with the SARS-CoV-2 spike protein. This colorimetric change of the Q-tip testing zone from white to orange confirms a positive result. The visual detection limit of the COVID-19 engineered colorimetric Q-tip sensor was 100 pfu/mL within a relatively short turnaround time of 5 min. The linear working range of quantitation was 103-108 pfu/mL. The engineered sensor selectively targeted SARS-CoV-2 spike protein and did not bind to another coronavirus such as MERS-CoV, Flu A, or Flu B present on the contaminated surface. This novel detection tool is relatively cheap to produce and suitable for onsite detection of COVID-19 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , COVID-19/diagnóstico , Humanos , Glicoproteína da Espícula de Coronavírus/análise
19.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35056143

RESUMO

E. coli is a Gram-negative bacterium that causes different human infections. Additionally, it resists common antibiotics due to its outer protective membrane. Natural products have been proven to be efficient antibiotics. However, plant natural products are far less explored in this regard. Accordingly, over 16,000 structures covering almost all African medicinal plants in AfroDb in a structural-based virtual screening were used to find efficient anti-E. coli candidates. These drug-like structures were docked into the active sites of two important molecular targets (i.e., E. coli's Ddl-B and Gyr-B). The top-scoring hits (i.e., got docking scores < -10 kcal/mol) produced in the initial virtual screening (0.15% of the database structures for Ddl-B and 0.17% of the database structures for Gyr-B in the database) were further refined using molecular dynamic simulation-based binding free energy (ΔG) calculation. Anthraquinones were found to prevail among the retrieved hits. Accordingly, readily available anthraquinone derivatives (10 hits) were selected, prepared, and tested in vitro against Ddl-B, Gyr-B, multidrug-resistant (MDR) E. coli, MRSA, and VRSA. A number of the tested derivatives demonstrated strong micromolar enzyme inhibition and antibacterial activity against E. coli, MRSA, and VRSA, with MIC values ranging from 2 to 64 µg/mL. Moreover, both E. coli's Ddl-B and Gyr-B were inhibited by emodin and chrysophanol with IC50 values comparable to the reference inhibitors (IC50 = 216 ± 5.6, 236 ± 8.9 and 0.81 ± 0.3, 1.5 ± 0.5 µM for Ddl-B and Gyr-B, respectively). All of the active antibacterial anthraquinone hits showed low to moderate cellular cytotoxicity (CC50 > 50 µM) against human normal fibroblasts (WI-38). Furthermore, molecular dynamic simulation (MDS) experiments were carried out to reveal the binding modes of these inhibitors inside the active site of each enzyme. The findings presented in this study are regarded as a significant step toward developing novel antibacterial agents against MDR strains.

20.
J Healthc Eng ; 2022: 6074538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368940

RESUMO

Early and accurate detection of COVID-19 is an essential process to curb the spread of this deadly disease and its mortality rate. Chest radiology scan is a significant tool for early management and diagnosis of COVID-19 since the virus targets the respiratory system. Chest X-ray (CXR) images are highly useful in the effective detection of COVID-19, thanks to its availability, cost-effective means, and rapid outcomes. In addition, Artificial Intelligence (AI) techniques such as deep learning (DL) models play a significant role in designing automated diagnostic processes using CXR images. With this motivation, the current study presents a new Quantum Seagull Optimization Algorithm with DL-based COVID-19 diagnosis model, named QSGOA-DL technique. The proposed QSGOA-DL technique intends to detect and classify COVID-19 with the help of CXR images. In this regard, the QSGOA-DL technique involves the design of EfficientNet-B4 as a feature extractor, whereas hyperparameter optimization is carried out with the help of QSGOA technique. Moreover, the classification process is performed by a multilayer extreme learning machine (MELM) model. The novelty of the study lies in the designing of QSGOA for hyperparameter optimization of the EfficientNet-B4 model. An extensive series of simulations was carried out on the benchmark test CXR dataset, and the results were assessed under different aspects. The simulation results demonstrate the promising performance of the proposed QSGOA-DL technique compared to recent approaches.


Assuntos
Inteligência Artificial , COVID-19 , COVID-19/diagnóstico por imagem , Teste para COVID-19 , Humanos , Aprendizado de Máquina , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA