Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Environ Manage ; 361: 121231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810463

RESUMO

Insitu stabilization and phytoextraction are considered as two convenient and effective technologies for the remediation of toxic elements (TEs) in soils. However, the effectiveness of these two remediation technologies together on the bioavailability and phytoextraction of TEs in field trials has not been explored yet. Specifically, the remediation potential of fly ash (FA; as stabilizing agent) and ryegrass (as a TE accumulator) intercropped with a target crop for soil polluted with multiple TEs has not been investigated yet, particularly in long-term field trials. Therefore, in this study, a six-month combined remediation field experiment of FA stabilization and/or ryegrass intercropping (IR) was carried out on the farmland soils contaminated with As, Cd, Cr, Cu, Hg, Ni, Pb and Zn where Zanthoxylumbungeanum (ZB) trees as native crops were grown for years. The treatments include soil cultivated alone with ZB untreated- (control) and treated-with FA (FA), produced by burning lignite in Shaanxi Datong power plant, China, soil cultivated with ZB and ryegrass untreated- (IR) and treated-with FA (FA + IR). This was underpinned by a large-scale survey in Daiziying (China), which showed that the topsoils were polluted by Cd, Cu, Hg and Pb, and that Hg and Pb contents in the Zanthoxylumbungeanum fruits exceeded their allowable limits. The TEs contents in the studied FA were lower than their total element contents in the soil. The DTPA-extractable TEs contents of the remediation modes were as follows: FA < FA + IR < IR < control. Notably, TEs contents in the ZB fruits were lowest under the FA + IR treatment, which were decreased by 27.6% for As, 42.3% for Cd, 16.7% for Cr, 30.5% for Cu, 23.1% for Hg, 15.5% for Ni, 33.2% for Pb and 38.1% for Zn compared with the control treatment. Whereas the FA + IR treatment enhanced TEs contents in ryegrass shoots and roots, and the TEs contents in ryegrass shoots were below their regulatory limits for fodder crops. The findings confirmed that the combined remediation strategy, i.e., FA (with low content of TEs) stabilization effect and intercropping of ZB (target crop) and ryegrass (accumulating plant) could provide a prospective approach to produce target plants within safe TEs thresholds with greater economic benefits, while remediating soils polluted with multiple TEs and mitigating the potential ecological and human health risk. Those results are of great applicable concern.


Assuntos
Cinza de Carvão , Lolium , Poluentes do Solo , Solo , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Poluentes do Solo/metabolismo , Solo/química , China , Recuperação e Remediação Ambiental/métodos , Biodegradação Ambiental , Metais Pesados
2.
Environ Res ; 227: 115799, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37015300

RESUMO

Veterinary antibiotics (VAs) are emerging contaminants in soils as they may pose high risks to the ecosystem and human health. Identifying VAs accumulation in soils is essential for assessing their potential risks. Therefore, we investigated the distribution of VAs in soils from vegetable fields and evaluated their potential ecological and antimicrobial resistance risks in the Chongqing region of the Three Gorges Reservoir area, China. Results indicated that twenty-six species of VAs, including nine sulfonamides (SAs), seven quinolones (QNs), four tetracyclines (TCs), four macrolides (MLs), and two other species of VAs were detected in soils, with their accumulative levels ranging from 1.4 to 3145.7 µg kg-1. TCs and QNs were the dominant VAs species in soils with high detection frequencies (100% TCs and 80.6% for QNs) and accumulative concentration (up to 1195 µg kg-1 for TCs and up to 485 µg kg-1 for QNs). Risk assessment indices showed that VAs (specifically SAs, TCs, and QNs) in most vegetable soils would pose a medium to high risk to the ecosystem and antimicrobial resistance. Mixture of VAs posed a higher risk to soil organisms, antimicrobial resistance, and plants than to aquatic organisms. Modeling analysis indicated that socioeconomic conditions, farmers' education levels, agricultural practices, and soil properties were the main factors governing VAs accumulation and environmental risks. Farmers with a high educational level owned large-scale farms and were more willing to use organic fertilizers for vegetable production, which eventually led to high VAs accumulation in vegetable soil. These findings would provide a reference for sustainable agricultural and environmental production under the current scenario of chemical fertilizer substitution by organic products and green agricultural development.


Assuntos
Quinolonas , Poluentes do Solo , Humanos , Antibacterianos/análise , Solo/química , Verduras/química , Ecossistema , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Tetraciclinas/análise , Sulfanilamida/análise , China , Medição de Risco , Fertilizantes/análise
3.
Environ Res ; 216(Pt 4): 114646, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332671

RESUMO

Microbial-assisted phytoremediation provides a green approach for remediation of metal contaminated soils. However, the impacts of mono and co-applications of lactic acid bacteria (LAB) on soil biochemical properties and phytoavailability of toxic metals in contaminated mining soils have not yet been sufficiently examined. Consequently, here we studied the effects of Lactobacillus plantarum (P), Lactobacillus acidophilus (A), and Lactobacillus rhamnosus (R) applications alone and in combination on soil enzyme activities and bioavailability and uptake of Cd and Zn by mustard (Brassica juncea) in a smelter-contaminated soil under greenhouse conditions. Among the studied bacteria, P was the most tolerant to Cd-and-Zn contamination. As compared to control, R increased the fresh and dry weight of mustard plants by 53.5% and 63.2%, respectively. Co-application of P + A increased the chlorophyll content by 28.6%, as compared to control. Addition of LAB to soil increased the activity of soil urease, alkaline phosphatase and ß-D glucosidase increased by 1.86-fold (P + R), 1.80-fold (R) and 55.16% (P + R), respectively. Application of P + A + R enhanced catalase activity (19.3%) and superoxide dismutase activity (51.2%), while addition of A alone increased peroxidase activity (POD: 15.7%). Addition of P alone and together with A (P + A) enhanced Cd and Zn phytoextraction by mustard shoots up to 51.5% and 52.5%, respectively. We conclude that the single and/or co-application of LAB decreased soil pH, promoted plant growth, antioxidant and enzyme activities, and enhanced the phytoavailability of Cd and Zn in the studied contaminated soil. These findings might be an aid for enhancing the phytoremediation of Cd and Zn using LAB and mustard as a bioenergy crop, which may offer new ideas for field treatment of toxic metals contaminated soils.


Assuntos
Lactobacillales , Poluentes do Solo , Antioxidantes , Biodegradação Ambiental , Bioengenharia , Cádmio/análise , Cádmio/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Mostardeira , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zinco/análise , Zinco/toxicidade
4.
Environ Res ; 216(Pt 1): 114278, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115420

RESUMO

Bone waste could be utilized as a potential amendment for remediation of smelter-contaminated soils. Nevertheless, the influences of cow bone-derived biochar (CB) on soil microbial biomass and microbial community composition in multi-metal contaminated mining soils are still not clearly documented. Hence, the cow bone was used as feedstock material for biochar preparation and pyrolyzed at two temperatures such as 500 °C (CB500) and 800 °C (CB800), and added to a smelter soil at the dosage of 0 (unamended control), 2.5, 5, and 10% (w/w); then, the soil treatments were cultivated by maize. The CB effect on soil biochemical attributes and response of soil microbial biomass, bacterial communities, and diversity indices were examined after harvesting maize. Addition of CB enhanced total nutrient contents (i.e., total nitrogen up to 26% and total phosphorus P up to 27%) and the nutrients availability (i.e., NH4 up to 50%; NO3 up to 31%; Olsen P up to 48%; extractable K up to 18%; dissolved organic carbon up to 74%) in the treated soil, as compared to the control. The CB500 application revealed higher microbial biomass C (up to 66%), P (up to 41%), and bacterial gene abundance (up to 76%) than the control. However, comparatively a lower microbial biomass nitrogen and diversity indices were observed in the biochar (both with CB500 and CB800) treated soils than in the unamended soils. At the phylum level, the highest dose (10% of CB500 and CB800 resulted in contrasting effects on the Proteobacteria diversity. The CB50010 favored the Pseudomonas abundance (up to 793%), Saccharibacteria (583%), Parcubacteria (138%), Actinobacteria (65%), and Firmicutes (48%) microbial communities, while CB80010 favored the Saccharibacteria (386%), Proteobacteria (12%) and Acidobacteria (11%), as compared to the control. These results imply that CB500 and CB800 have a remarkable impact on microbial biomass and bacterial diversity in smelter contaminated soils. Particularly, CB500 was found to be suitable for enhancing microbial biomass, bacterial growth of specific phylum, and diversity, which can be useful for bioremediation of mining soils.


Assuntos
Microbiologia do Solo , Poluentes do Solo , Biomassa , Solo/química , Poluentes do Solo/análise , Nitrogênio/análise , Bactérias/genética
5.
Environ Res ; 204(Pt B): 112107, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34560058

RESUMO

The COVID-19 pandemic lockdown supposedly provided a 'window' of reinstatement to natural resources including the air quality, but the scenario after the phased unlocking is yet to be explored. Consequently, here we evaluated the status of air quality during the 8th phase of unlocking of COVID-19 lockdown (January 2021) at three locations of North India. The first site (S1) was located at Punjab Agricultural University, Ludhiana-PPCB; the second site (S2) at Yamunapuram, Bulandshahr-UPPCB; and the third site (S3) at Okhla Phase-2, Delhi-DPCC. The levels of PM2.5 showed a significant increase of 525.2%, 281.2%, and 185.0% at sites S1, S2 and S3, respectively in the unlock 8 (January 2021), in comparison to its concentration in the lockdown phase. Coherently, the levels of PM10 also showed a prominent increase of 284.5%, 189.1%, and 103.9% at sites S3, S1, and S2, respectively during the unlock 8 as compared to its concentration in the lockdown phase. This rise in the concentration of PM2.5 and PM10 could be primarily attributed to the use of biomass fuel, industrial and vehicular emissions, stubble burning considering the agricultural activities at sites S1 and S2. Site S3 is a major industrial hub and has the highest population density among all three sites. Consequently, the maximum increase (295.7%) in the NO2 levels during the unlock 8 was witnessed at site S3. The strong correlation between PM2.5, PM10, and CO, along with the PM2.5/PM10 ratio confirmed the similar origin of these pollutants at all the three sites. The improvements in the levels of air quality during the COVID-19 lockdown were major overtaken during the various phases of unlocking consequent to the initiation of anthropogenic processes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Índia , Pandemias , Material Particulado/análise , SARS-CoV-2
6.
Environ Res ; 214(Pt 3): 114033, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952735

RESUMO

There are scarce data about the accumulation pattern and risk assessment of potentially toxic elements (PTEs) in soil and associated potential ecological risks, especially in less-developed countries. This study aims to assess the pollution levels and potential ecological risks of PTEs (As, Cr, Cd, Cu, Ni, Mn, Pb and Zn) in wastewater-irrigated arable soils and different edible-grown plants in selected areas of Vehari, Pakistan. The results revealed that the values of PTEs in soil samples were higher than their respective limit values by 20% for As, 87% for Cd, 15% for Cu, 2% for Cr, 83% for Mn, 98% for Fe, and 7% for Zn. The values of soil risk indices such as the potential ecological risk (PERI >380 for all samples), pollution load index (PLI >4 for 94% of studied samples), and degree of contamination (Dc > 24 for all samples) showed severe soil contamination in the study area. Some vegetables exhibited a high metal accumulation index (e.g., 8.1 for onion), signifying potential associated health hazards. Thus, long-term wastewater irrigation has led to severe soil contamination, which can pose potential ecological risks via PTE accumulation in crops, particularly Cd. Therefore, to ensure food safety, frequent wastewater irrigation practices need to be minimized and managed in the study area.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio , Monitoramento Ambiental/métodos , Metais Pesados/análise , Metais Pesados/toxicidade , Paquistão , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Águas Residuárias
7.
Int J Biometeorol ; 66(5): 971-985, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35149894

RESUMO

The impacts of climate change and possible adaptations to food security are a global concern and need greater focus in arid and semi-arid regions. It includes scenario of Coupled Model Intercomparison Phase 5 (CMIP-RCP8.5). For this purpose, two DSSAT maize models (CSM-CERES and CSM-IXIM) were calibrated and tested with two different maize cultivars namely Single Cross 10 (SC10) and Three Way Cross 324 (TW24) using a dataset of three growing seasons in Nile Delta. SC10 is a long-growing cultivar that is resistant to abiotic stresses, whereas TW24 is short and sensitive to such harsh conditions. The calibrated models were then employed to predict maize yield in baseline (1981-2010) and under future time slices (2030s, 2050s, and 2080s) using three Global Climate Models (GCMs) under CMIP5-RCP8.5 scenario. In addition, the use of various adaptation options as shifting planting date, increasing sowing density, and genotypes was included in crop models. Simulation analysis showed that, averaged over three GCMs and two crop models, the yield of late maturity cultivar (SC10) decreased by 4.1, 17.2, and 55.9% for the three time slices of 2030s, 2050s, and 2080s, respectively, compared to baseline yield (1981-2010). Such reduction increased with early maturity cultivar (TW24), recording 12.4, 40.6, and 71.3% for near (2030s), mid (2050s), and late century (2080s) respectively relative to baseline yield. The most suitable adaptation options included choosing a stress-resistant genotype, changing the planting date to plus or minus 30 days from baseline planting date, and raising the sowing density to 9 m-2 plants. These insights could minimize the potential reduction of climate change-induced yields by 39% by late century.


Assuntos
Aclimatação , Zea mays , Mudança Climática , Clima Desértico , Genótipo
8.
Int J Phytoremediation ; 24(2): 156-165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34081869

RESUMO

In this study, we investigate the effect of nitrogen fertilizer application rates with and without phosphorus-loaded biochar (BCP) on the productivity of tomato (Solanum lycopersicum cv GS) planted on a contaminated soil based on pot and incubation experiments. The release kinetic of toxic metals as affected by BCP was also investigated. BCP at rate of 2% (w/w) and nitrogen levels (250 and 500 mg N kg-1) were added to sandy loam soil polluted with Cd, Pb, Zn, and Cu. The experiment consisted of five treatments including: Control (C), nitrogen a rate of 250 (N250), or 500 mg kg (N500), BCP + N250, and BCP + N500. Maximum tomato growth was achieved in the soil that was treated with BCP + N500, followed by BCP + N250, while lowest one was observed in the control. Tomato yield as affected by the BCP and N-fertilization was in the descending order: BCP + N500 > BCP + N250 > N500 = N250 > C. The addition of N250, N500, BCP + N250, and BCP + N500 increased the fruit yield by 24, 31, 35, 58% in comparison with the control. Levels of Zn, Cu, and Pb in tomato fruit was in the descending order: N500> N250 > C > BCP + N500 > BCP + N250. The combined application of BCP and N-fertilization augmented the availability and uptake of essential nutrients and effectively reduced those of toxic ones. The addition of BCP + N250 decreased Zn, Cu, Cd, and Pb content in fruit of tomato by 16, 10, 54, 54, and 58%, respectively, compared to the control soil, while these decreases were 13, 16, 60, 60, and 72% in the case of BCP + N500. BCP succeeded significantly in reducing the release of toxic chemicals, which ultimately may restrict the transfer of toxic chemical to the food chain solution. Novelty statement Tomato grown on metal-contaminated soils contains high levels of toxic metals. Phosphorus-loaded biochar (BCP) reduced the negative effects of high inorganic-N rates by reducing the release of toxic metals to the soil solution. BCP enhanced the soil quality indicators and increased the soil microbe's activity.


Assuntos
Metais Pesados , Poluentes do Solo , Solanum lycopersicum , Biodegradação Ambiental , Carvão Vegetal , Fertilização , Metais Pesados/análise , Metais Pesados/toxicidade , Nitrogênio , Fósforo , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
9.
Molecules ; 27(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458795

RESUMO

Peaches are grown in many Egyptian orchards for local and global fresh market sales. The interior fruit tissue breakdown (IFTB), often resulting in decayed peaches, is a severe problem during marketing. Therefore, to minimize FTB of peaches, in this study, gum arabic (GA) and polyvinylpyrrolidone (PVP) were mixed with different concentrations of salicylic acid (SA) (0, 1, and 2 mM) and were applied as edible coating to extend the shelf life of peach fruits. Mature peaches were selected and harvested when peaches reached total soluble solid content (SSC: 8.5%) and fruit firmness of about 47 N. Fruits were coated and stored at room temperature (26 ± 1 °C and air humidity 51 ± 1%) for 10 days during two seasons: 2020 and 2021. Fruit coated with GA/PVP-SA 2 mM showed a significant (p < 0.05) inhibition in degrading enzyme activities (CWDEs), such as lipoxygenase (LOX), cellulase (CEL), and pectinase (PT), compared to uncoated and coated fruits during the shelf-life period. Hence, cell wall compartments were maintained. Consequently, there was a reduction in browning symptoms in fruits by inhibiting polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) activities. Thus, the fruit skin browning index showed almost no symptoms. The lipid peroxidation process and ionic permeability declined as well. The result suggests that, by applying GA/PVP-SA 2 mM as an edible coating, fruit tissue breakdown can be minimized, and the shelf life of peach can be extended up to 10 days without symptoms of tissue breakdown.


Assuntos
Prunus persica , Frutas/metabolismo , Goma Arábica , Povidona , Ácido Salicílico/metabolismo
10.
J Environ Manage ; 297: 113250, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274764

RESUMO

A field experiment was carried out to evaluate the effects of different biochars on grain yield and phytoavailability and uptake of macro- and micro-nutrients by rice and wheat grown in a paddy soil in a rotation. Soil was treated with i) maize raw (un-washed) biochar (MRB), ii) maize water-washed biochar (MWB), iii) wheat raw biochar (WRB) or iv) wheat water-washed biochar (WWB) and untreated soil was used as control (CF). Inorganic fertilizers were applied to all soils while biochar treated soils received 20 ton ha-1 of designated biochar before rice cultivation in rice-wheat rotation. The WRB significantly (P < 0.05) increased rice grain yield and straw by up to 49%, compared to the CF. Biochar addition, particularly WRB, significantly increased the availability of N, P, K and their content in the grain (26-37%) and straw (22-37%) of rice and wheat. Also, the availability and grain content of Fe, Mn, Zn, and Cu increased significantly after biochar addition, particularly after the WRB, due to WRB water dissolved C acting as a carrier for micronutrients in soil and plant. However, the water-washing process altered biochar properties, particularly the water extractable C, which decreased its efficiency. Both wheat- and maize-derived biochars, particularly the WRB, are recommended to improve nutrients availability and to improve grain yield in the rice-wheat rotation agro-ecosystem. These results shed light on the importance of crop straw transformation into an important source for soil C and nutrients necessary for sustainable management of wheat-rice agro-ecosystem. However, with the current and future alternative energy demands, the decision on using crop biomass for soil conservation or for bioenergy becomes a challenge reliant on regulatory and policy frameworks.


Assuntos
Oryza , Poluentes do Solo , Carvão Vegetal , Ecossistema , Nutrientes , Solo , Poluentes do Solo/análise , Triticum , Água , Zea mays
11.
J Environ Manage ; 281: 111881, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401121

RESUMO

We need to produce higher foods even under declining natural resources to feed the projected population of 9 billion by 2050 and to sustain food security and nutrition. Abiotic stress has adversely affected canola crop and oil quality especially in sandy soils. To combat this stress, adaptation at the farm level using new and cost-effective amendments are required. Field trials were conducted in two different climatic zones to determine the efficacy of cane molasses, bagasse ash, sugar beet factory lime, and their compost mixtures to improve soil quality and heat stress-adapting canola. The results showed a significant improvement in bulk density, hydraulic conductivity, organic matter content, and available macronutrients of sandy soil and subsequent canola growth, yield, quality and water productivity due to the application of the tested soil amendments, particularly those mixed with compost. Despite the estimated reduction of yield by 18.5% due to heat stress, application of sugar beet lime and compost mixture not only compensated for this reduction but also increased the seed yield by 27.0%. These findings highlight the value of recycling compost-based sugar crop disposal as a cost-effective technology to boost crop tolerance to abiotic stress, ensuring sustainable agriculture and food security in arid environments.


Assuntos
Brassica napus , Poluentes do Solo , Agricultura , Solo , Poluentes do Solo/análise , Estresse Fisiológico , Açúcares
12.
J Hazard Mater ; 477: 135239, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39053060

RESUMO

Bisphenol-A (BPA) is an emerging hazardous contaminant, which is ubiquitous in the environment and can cause endocrine disruptor and cancer risks. Therefore, biodegradation of BPA is an essential issue to mitigate the associated human health. In this work, a bacterial strain enables of degrading BPA, named BPA-LRH8 (identified as Xenophilus sp.), was newly isolated from activated sludge and embedded onto walnut shell biochar (WSBC) to form a bio-composite (BCM) for biodegradation of BPA in water. The Langmuir maximum adsorption capacity of BPA by WSBC was 21.7 mg g-1. The free bacteria of BPA-LRH8 showed high BPA degradation rate (∼100 %) at pH 5-11, while it was lower (<20 %) at pH 3. The BCM eliminated all BPA (∼100 %) at pH 3-11 and 25-45 °C when the BPA level was ≤ 25 mg L-1. The spectrometry investigations suggested two possible degradation routes of BPA by Xenophilus sp. In one route, BPA (C15H16O3) was oxidized to C15H16O3, and then broken into C9H12O3 through chain scission. In another route, BPA was likely hydroxylated, oxidized, and cleaved into C9H10O4P4, which was further metabolized into CO2 and H2O in the TCA cycle. This study concluded that the novel isolated bacteria (BPA-LRH8) embedded onto WSBC is a promising and new method for the effective removal of BPA and similar hazardous substances from contaminated water under high concentrations and wide range of pH and temperature.


Assuntos
Compostos Benzidrílicos , Biodegradação Ambiental , Carvão Vegetal , Fenóis , Poluentes Químicos da Água , Fenóis/metabolismo , Carvão Vegetal/química , Compostos Benzidrílicos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Adsorção , Rhizobiaceae/metabolismo
13.
Plant Physiol Biochem ; 215: 109068, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216160

RESUMO

Although much interest has been focused on the role of selenium (Se) in plant nutrition over the last 20 years, the influences of organic selenium (selenomethionine; Se-Met) and inorganic selenium (potassium selenite; Se-K) on the growth and physiological characters of cadmium (Cd)-stressed Glycine max L.) seedlings have not yet been studied. In this study, the impacts of Se-Met or Se-K on the growth, water physiological parameters (gaseous exchange and leaf water content), photosynthetic and antioxidant capacities, and hormonal balance of G. max seedlings grown under 1.0 mM Cd stress were studied. The results showed that 30 µM Se-K up-regulates water physiological parameters, photosynthetic indices, antioxidant systems, enzymatic gene expression, total antioxidant activity (TAA), and hormonal balance. In addition, it down-regulates levels of reactive oxygen species (ROS; superoxide free radicals and hydrogen peroxide), oxidative damage (malondialdehyde content as an indicator of lipid peroxidation and electrolyte leakage), Cd translocation factor, and Cd content of Cd-stressed G. max seedlings. These positive findings were in favor of seedling growth and development under Cd stress. However, 50 µM Se-Met was more efficient than 30 µM Se-K in promoting the above-mentioned parameters of Cd-stressed G. max seedlings. From the current results, we conclude Se-Met could represent a promising strategy to contribute to the development and sustainability of crop production on soils contaminated with Cd at a concentration of up to 1.0 mM. However, further work is warranted to better understand the precise mechanisms of Se-Met action under Cd stress conditions.


Assuntos
Antioxidantes , Cádmio , Glycine max , Selênio , Cádmio/toxicidade , Cádmio/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Antioxidantes/metabolismo , Selênio/metabolismo , Selênio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Regulação para Baixo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos , Selenometionina/metabolismo , Selenometionina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Malondialdeído/metabolismo
14.
Sci Total Environ ; 954: 176531, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332740

RESUMO

The effects of engineered steam exploded biochar on the phytoavailability of toxic elements in the shared- and nonshared-rhizosphere of vegetable-grass intercropping system have not been investigated yet. Therefore, we explored and elucidated the synergistic effect of pristine rape-straw biochar (BC), steam exploded BC (BCSE), KMnO4-modified BCSE (BCSEMn), and hydroxyapatite-modified BCSE (BCSEHA) on the solubility, fractionation and phytoavailability of lead (Pb) in a vegetable-grass intercropping system. In a rhizosphere box, Brassica chinensis L. (pakchoi; PC, as a vegetable) and Pennisetum polystachion L. (mission grass; MG, as a Pb hyperaccumulator), were grown in the biochar treated soil with (non-shared rhizosphere) or without (shared rhizosphere) root separation. Addition of BCSEMn and BCSEHA, particularly BCSEMn, significantly improved plant growth, photosynthetic pigment levels, and positively influenced the gas exchange attributes by suppressing oxidative stress and boosting antioxidant enzymes activities. Both biochars altered a proportion of Pb in the acid soluble to the immobile fraction and thus significantly decreased its leachability (TCLP-Pb) and bioavailability (CaCl2-extrcated Pb) by 32.7 %-33.9 % and 48.5 %-53.5 %, respectively, as compared to the control. Both biochars, particularly BCSEMn, reduced significantly the Pb content in shoots and roots of PC and MG with a significantly higher efficiency in the PC than in the MG; this was the case more in the shared than in the non-shared rhizosphere. These findings indicate the synergistic effect of BCSEMn and BCSEHA and intercropping for enhancing the grass phytostabilization capacity for Pb and reducing its uptake by edible plants in a vegetables-grass system, which could be used as a promising approach for the phytomanagement of Pb contaminated soils.

15.
Sci Total Environ ; 929: 172632, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653412

RESUMO

The effectiveness of almond shell-derived biochar (ASB) in immobilizing soil heavy metals (HMs) and its impact on soil microbial activity and diversity have not been sufficiently studied. Hence, a pot study was carried out to investigate the effectiveness of ASB addition at 2, 4, and 6 % (w/w) on soil biochemical characteristics and the bioavailability of Cd, Cu, Pb, and Zn to tomato (Solanum lycopersicum L.) plants, as compared to the control (contaminated soil without ASB addition). The addition of ASB promoted plant growth (up to two-fold) and restored the damage to the ultrastructure of chloroplast organelles. In addition, ASB mitigated the adverse effects of HMs toxicity by decreasing oxidative damage, regulating the antioxidant system, improving soil physicochemical properties, and enhancing enzymatic activities. At the phylum level, ASB addition enhanced the relative abundance of Actinobacteriota, Acidobacteriota, and Firmicutes while decreasing the relative abundance of Proteobacteria and Bacteroidota. Furthermore, ASB application increased the relative abundance of several fungal taxa (Ascomycota and Mortierellomycota) while reducing the relative abundance of Basidiomycota in the soil. The ASB-induced improvement in soil properties, microbial community, and diversity led to a significant decrease in the DTPA-extractable HMs down to 41.0 %, 51.0 %, 52.0 %, and 35.0 % for Cd, Cu, Pb, and Zn, respectively, as compared to the control. The highest doses of ASB (ASB6) significantly reduced the metals content by 26.0 % for Cd, 78.0 % for Cu, 38.0 % for Pb, and 20.0 % for Zn in the roots, and 72.0 % for Cd, 67.0 % for Cu, 46.0 % for Pb, and 35.0 % for Zn in the shoots, as compared to the control. The structural equation model predicts that soil pH and organic matter are driving factors in reducing the availability and uptake of HMs. ASB could be used as a sustainable trial for remediation of HMs polluted soils and reducing metal content in edible plants.


Assuntos
Antioxidantes , Carvão Vegetal , Metais Pesados , Microbiota , Prunus dulcis , Microbiologia do Solo , Poluentes do Solo , Solanum lycopersicum , Carvão Vegetal/química , Poluentes do Solo/metabolismo , Antioxidantes/metabolismo , Microbiota/efeitos dos fármacos , Disponibilidade Biológica , Solo/química
16.
Environ Sci Pollut Res Int ; 30(8): 21872-21887, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36279063

RESUMO

In this study, we utilized pomegranate peel and marine algae Ulva lactuca (U. lactuca) as rich and sustained sources of bioactive compounds to combat tomato-black spot disease. n-Hexane extracts from the peel of pomegranate (Punica granatum) (PPE) and the marine algal biomass U. lactuca (ULE) were used alone and in combinations to verify their impact against Alternaria alternata (A. alternata). The applied extracts exhibited severe destructive effects on both fungal growth and structure such as mycelia malformation, underdeveloped conidia, cell wall deformation, and shrinkage. Moreover, increased deformations and protrusions, and notch-like structures, were noticed in A. alternata mycelia treated with mixed extracts (PPE and ULE) compared to all other treatments. The protein and reduced sugar contents in tomato fruits were significantly increased in the infected fruits with A. alternata. The highest enzyme activities of pectinase, cellulase, catalase (CAT), and ascorbate peroxidase (APX) were recorded in infected tomatoes in comparison with the healthy ones. Molecular docking studies showed that each extract is rich with bioactive compounds that have a promising inhibition effect on A. alternata cellulases. Pomegranate and Ulva extract showed promising antifungal activity against A. alternata which revealed their feasibility and applicability as biocontrol agents in postharvest disease management and food preservation against fungal pathogens.


Assuntos
Punica granatum , Ulva , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Alternaria
17.
Plants (Basel) ; 12(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836147

RESUMO

As a result of the climate changes that are getting worse nowadays, drought stress (DS) is a major obstacle during crop life stages, which ultimately reduces tomato crop yields. So, there is a need to adopt modern approaches like a novel nutrient- and antioxidant-based formulation (NABF) for boosting tomato crop productivity. NABF consists of antioxidants (i.e., citric acid, salicylic acid, ascorbic acid, glutathione, and EDTA) and nutrients making it a fruitful growth stimulator against environmental stressors. As a first report, this study was scheduled to investigate the foliar application of NABF on growth and production traits, physio-biochemical attributes, water use efficiency (WUE), and nutritional, hormonal, and antioxidative status of tomato plants cultivated under full watering (100% of ETc) and DS (80 or 60% of ETc). Stressed tomato plants treated with NABF had higher DS tolerance through improved traits of photosynthetic efficiency, leaf integrity, various nutrients (i.e., copper, zinc, manganese, calcium, potassium, phosphorus, and nitrogen), and hormonal contents. These positives were a result of lower levels of oxidative stress biomarkers as a result of enhanced osmoprotectants (soluble sugars, proline, and soluble protein), and non-enzymatic and enzymatic antioxidant activities. Growth, yield, and fruit quality traits, as well as WUE, were improved. Full watering with application of 2.5 g NABF L-1 collected 121 t tomato fruits per hectare as the best treatment. Under moderate DS (80% of ETc), NABF application increased fruit yield by 10.3%, while, under severe DS (40% of ETc), the same fruit yield was obtained compared to full irrigation without NABF. Therefore, the application of 60% ETc × NABF was explored to not only give a similar yield with higher quality compared to 100% ETc without NABF as well as increase WUE.

18.
Plants (Basel) ; 12(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37836175

RESUMO

Excessive use of nitrogen (N) pollutes the environment and causes greenhouse gas emissions; however, the application of eco-friendly plant biostimulators (BSs) can overcome these issues. Therefore, this paper aimed to explore the role of diluted bee honey solution (DHS) in attenuating the adverse impacts of N toxicity on Phaseolus vulgaris growth, yield quality, physio-chemical properties, and defense systems. For this purpose, the soil was fertilized with 100, 125, and 150% of the recommended N dose (RND), and the plants were sprayed with 1.5% DHS. Trials were arranged in a two-factor split-plot design (N levels occupied main plots × DH- occupied subplots). Excess N (150% RND) caused a significant decline in plant growth, yield quality, photosynthesis, and antioxidants, while significantly increasing oxidants and oxidative damage [hydrogen peroxide (H2O2), superoxide (O2•-), nitrate, electrolyte leakage (EL), and malondialdehyde (MDA) levels]. However, DHS significantly improved antioxidant activities (glutathione and nitrate reductases, catalase, ascorbate peroxidase, superoxide dismutase, proline, ascorbate, α-tocopherol, and glutathione) and osmoregulatory levels (soluble protein, glycine betaine, and soluble sugars). Enzyme gene expressions showed the same trend as enzyme activities. Additionally, H2O2, O2•-, EL, MDA, and nitrate levels were significantly declined, reflecting enhanced growth, yield, fruit quality, and photosynthetic efficiency. The results demonstrate that DHS can be used as an eco-friendly approach to overcome the harmful impacts of N toxicity on P. vulgaris plants.

19.
Mar Pollut Bull ; 191: 114899, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37027965

RESUMO

Sustainable and safe management of aquaculture sediments is of great concern. Biochar (BC) and fishpond sediments (FPS) are rich in organic carbon and nutrients and thus can be used as soil amendments; however, it is not fully explored how the biochar amended fishpond sediments can affect soil properties/fertility and modulate plant physiological and biochemical changes, particularly under contamination stress. Therefore, a comprehensive investigation was carried out to explore the effects of FPS and BC-treated FPS (BFPS) on soil and on spinach (Spinacia oleracea L.) grown in chromium (Cr) contaminated soils. Addition of FPS and BFPS to soil caused an increase in nutrients content and reduced Cr levels in soil, which consequently resulted in a significant increase in plant biomass, chlorophyll pigments, and photosynthesis, over the control treatment. The most beneficial effect was observed with the BFPS applied at 35 %, which further increased the antioxidant enzymes (by 2.75-fold, at minimum), soluble sugars by 24.9 %, and upregulated the gene expression activities. However, the same treatment significantly decreased proline content by 74.9 %, Malondialdehyde by 65.6 %, H2O2 by 65.1 %, and Cr concentration in spinach root and shoot tissues. Moreover, the average daily intake analysis showed that BFPS (at 35 %) could effectively reduce human health risks associated with Cr consumption of leafy vegetables. In conclusion, these findings are necessary to provide guidelines for the reutilization of aquaculture sediments as an organic fertilizer and a soil amendment for polluted soils. However, more future field studies are necessary to provide guidelines and codes on aquaculture sediments reutilization as organic fertilizer and soil amendment for polluted soils, aiming for a more sustainable food system in China and globally, with extended benefits to the ecosystem and human.


Assuntos
Poluentes do Solo , Solo , Humanos , Solo/química , Ecossistema , Fertilizantes/análise , Peróxido de Hidrogênio , Carvão Vegetal/química , Cromo/análise , Aquicultura , Poluentes do Solo/análise
20.
J Hazard Mater ; 457: 131862, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329597

RESUMO

Melatonin (MT) has recently gained significant scientific interest, though its mechanism of action in enhancing plant vigor, cadmium (Cd) tolerance, and Cd phytoremediation processes are poorly understood. Therefore, here we investigated the beneficial role of MT in improving growth and Cd remediation potential of rapeseed (Brassica napus). Plants, with or without MT (200 µM L-1), were subjected to Cd stress (30 mg kg1). Without MT, higher Cd accumulation (up to 99%) negatively affected plant growth and developmental feature as well as altered expression of several key genes (DEGs) involved in different molecular pathways of B. napus. As compared to only Cd-stressed counterparts, MT-treated plants exhibited better physiological performance as indicated by improved leaf photosynthetic and gaseous exchange processes (3-48%) followed by plant growth (up to 50%), fresh plant biomass (up to 45%), dry plant biomass (up to 32%), and growth tolerance indices (up to 50%) under Cd exposure. MT application enhanced Cd tolerance and phytoremediation capacity of B. napus by augmenting (1) Cd accumulation in plant tissues and its translocation to above-ground parts (by up to 45.0%), (2) Cd distribution in the leaf cell wall (by up to 42%), and (3) Cd detoxification by elevating phytochelatins (by up to 8%) and metallothioneins (by upto 14%) biosynthesis, in comparison to Cd-treated plants. MT played a protective role in stabilizing hydrogen peroxide and malondialdehyde levels in the tissue of the Cd-treated plants by enhancing the content of osmolytes (proline and total soluble protein) and activities of antioxidant enzymes (SOD, CAT, APX and GR). Transcriptomic analysis revealed that MT regulated 1809 differentially expressed genes (828 up and 981 down) together with 297 commonly expressed DEGs (CK vs Cd and Cd vs CdMT groups) involved in plant-pathogen interaction pathway, protein processing in the endoplasmic reticulum pathway, mitogen-activated protein kinase signaling pathway, and plant hormone signal transduction pathway which ultimately promoted plant growth and Cd remediation potential in the Cd-stressed plants. These results provide insights into the unexplored pleiotropic beneficial action of MT in enhancing in the growth and Cd phytoextraction potential of B. napus, paving the way for developing Cd-tolerant oilseed crops with higher remediation capacity as a bioecological trial for enhancing phytoremediation of hazardous toxic metals in the environment.


Assuntos
Brassica napus , Melatonina , Poluentes do Solo , Cádmio/metabolismo , Melatonina/farmacologia , Brassica napus/metabolismo , Biodegradação Ambiental , Solo , Antioxidantes/metabolismo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA