Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(9): e2302286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38056013

RESUMO

Spinal cord injury (SCI) commonly induces nerve damage and nerve cell degeneration. In this work, a novel dental pulp stem cells (DPSCs) encapsulated thermoresponsive injectable hydrogel with sustained hydrogen sulfide (H2S) delivery is demonstrated for SCI repair. For controlled and sustained H2S gas therapy, a clinically tested H2S donor (JK) loaded octysilane functionalized mesoporous silica nanoparticles (OMSNs) are incorporated into the thermosensitive hydrogel made from Pluronic F127 (PF-127). The JK-loaded functionalized MSNs (OMSF@JK) promote preferential M2-like polarization of macrophages and neuronal differentiation of DPSCs in vitro. OMSF@JK incorporated PF-127 injectable hydrogel (PF-OMSF@JK) has a soft consistency similar to that of the human spinal cord and thus, shows a high cytocompatibility with DPSCs. The cross-sectional micromorphology of the hydrogel shows a continuous porous structure. Last, the PF-OMSF@JK composite hydrogel considerably improves the in vivo SCI regeneration in Sprague-Dawley rats through a reduction in inflammation and neuronal differentiation of the incorporated stem cells as confirmed using western blotting and immunohistochemistry. The highly encouraging in vivo results prove that this novel design on hydrogel is a promising therapy for SCI regeneration with the potential for clinical translation.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Hidrogéis/química , Estudos Transversais , Polpa Dentária , Traumatismos da Medula Espinal/tratamento farmacológico , Células-Tronco , Medula Espinal
2.
Front Cell Dev Biol ; 9: 654654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869214

RESUMO

Titanium modifications with different silver loading methods demonstrate excellent antibacterial properties. Yet pure silver nanoparticles with limited bioactive properties may delay regeneration of bone surrounding the dental implant. Therefore, loading silver with bioactive drugs on titanium surfaces seems to be a very promising strategy. Herein, we designed a silver (Ag) step-by-step cross-linking with the basic fibroblast growth factor (bFGF) by polydopamine (PDA) and heparin on titanium nanotube (TNT) as its cargo (TNT/PDA/Ag/bFGF) to improve the implant surface. Our results showed that TNT/PDA/Ag/bFGF significantly enhanced the osteogenic differentiation of dental pulp stem cells (DPSCs). It also showed an excellent effect in bacterial inhibition and a reduction of pro-inflammatory factors through inhibition of M1 macrophage activity. These results showed that bFGF cross-linked silver coating on TNTs presented good osteogenic differentiation and early anti-infiammatory and antibacterial properties. Together, this novel design on titanium provides a promising therapeutic for dental implants.

3.
ACS Omega ; 5(26): 16064-16075, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32656428

RESUMO

Acute spinal cord injury (SCI) induces severe neuroinflammation, which increases intermediary filaments and neurodegeneration. Previous studies have shown that a basic fibroblast growth factor (bFGF) and dental pulp stem cells (DPSCs) contribute to a protective effect on injured neuronal cells, but the mechanism of SCI repair is still unclear. In this study, in situ heparin (HeP) hydrogel injection containing bFGF and DPSCs (HeP-bFGF-DPSCs), as well as in vitro studies of bFGF and DPSCs, proved an effective control over inflammation. The in vivo application of HeP-bFGF-DPSCs regulated inflammatory reactions and accelerated the nerve regeneration through microtubule stabilization and tissue vasculature. Our mechanistic investigation also showed that bFGF-DPSCs treatment inhibited microglia/macrophage proliferation and activation. Furthermore, HeP-bFGF-DPSCs prevented microglia/macrophage activation and reduced proinflammatory cytokine release. In this paper, we discovered that bFGF and DPSCs worked together to attenuate tissue inflammation of the injured spinal cord, resulting in a superior nerve repair. Our results indicated that a thermosensitive hydrogel delivering bFGF and DPSCs could serve as a promising treatment option for spinal cord injuries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA