Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nature ; 561(7721): 88-93, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30150772

RESUMO

The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1-3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination.

2.
Small ; 18(45): e2203629, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084240

RESUMO

Dendrimers are polymers with well-defined 3D branched structures that are vastly utilized in various neurotheranostics and biomedical applications, particularly as nanocarrier vectors. Imaging agents can be loaded into dendrimers to improve the accuracy of diagnostic imaging processes. Likewise, combining pharmaceutical agents and anticancer drugs with dendrimers can enhance their solubility, biocompatibility, and efficiency. Practically, by modifying ligands on the surface of dendrimers, effective therapeutic and diagnostic platforms can be constructed and implemented for targeted delivery. Dendrimer-based nanocarriers also show great potential in gene delivery. Since enzymes can degrade genetic materials during their blood circulation, dendrimers exhibit promising packaging and delivery alternatives, particularly for central nervous system (CNS) treatments. The DNA and RNA encapsulated in dendrimers represented by polyamidoamine that are used for targeted brain delivery, via chemical-structural adjustments and appropriate generation, significantly improve the correlation between transfection efficiency and cytotoxicity. This article reports a comprehensive review of dendrimers' structures, synthesis processes, and biological applications. Recent progress in diagnostic imaging processes and therapeutic applications for cancers and other CNS diseases are presented. Potential challenges and future directions in the development of dendrimers, which provide the theoretical basis for their broader applications in healthcare, are also discussed.


Assuntos
Dendrímeros , Dendrímeros/química , Portadores de Fármacos/química , Técnicas de Transferência de Genes , Transfecção , Solubilidade , Sistemas de Liberação de Medicamentos
3.
Nano Lett ; 21(1): 778-784, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33301328

RESUMO

Reprogrammed glucose metabolism is vital for cancer cells, but aspartate, an intermediate metabolic product, is the limiting factor for cancer cell proliferation. However, due to the complexity of metabolic pathways, it remains unclear whether glucose is the primary source of endogenous aspartate. Here, we report the design of an innovative molecular deactivator, based on a multifunctional upconversion nanoprobe, to explore the link between glucose and aspartate. This molecular deactivator mainly works in the acidic, hypoxic tumor microenvironment and deactivates multiple types of glucose transporters on cancer cell membranes upon illumination at 980 nm. Cancer cell proliferation in vivo is strongly inhibited by blocking glucose transporters. Our experimental data confirm that the cellular synthesis of aspartate for tumor growth is glucose-dependent. This work also demonstrates the untapped potential of molecularly engineered upconversion nanoprobes for discovering hidden metabolic pathways and improving therapeutic efficacy of conventional antitumor drugs.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Ácido Aspártico/farmacologia , Proliferação de Células/genética , Glucose , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Microambiente Tumoral
4.
Spinal Cord ; 59(11): 1206-1209, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34493803

RESUMO

STUDY DESIGN: Descriptive secondary analysis of two spinal cord injury (SCI) animal models. OBJECTIVES: To compare the somatosensory evoked potential (SSEP) and motor behavioral (BBB) assessments of the two most used rodent SCI models (contusion and transection), to elucidate their functional similarity and differences over the acute phase of 3 weeks. SETTING: Neuro-electrophysiology SSEP and motor behavioral BBB assessments are used to provide a comparative analysis of the functional changes among various severities of contusion and transection SCI. METHODS: Adult male and female rats randomly grouped (n = 5) as following: mild (6.25 mm), moderate (12.5 mm), severe (25 mm), and very severe (50 mm) contusion as well as right T10 hemi-transection (RxI), left T8 and right T10 double hemi-transection (DxI), and T8 complete transection (CxI) injuries, plus the control group (laminectomy with no injury). Animal weight, body temperature, anesthesia, surgical procedures, electrophysiological SSEP monitoring, locomotion BBB scoring, and statistical analysis were identical among all animal groups. RESULTS: Statistical analysis of the SSEP and BBB data from both contusion and transection injury models indicate significant differences (P < 0.05). The results also show remarkable similarity for the severe and very severe contusion injuries to the complete transection, the moderate contusion injury to the double hemi-transection, and the mild contusion injury to the T10 hemi-transection injury. CONCLUSION: Although contusion and transection spinal cord injuries have two completely different pathophysiologies, their injury progress during acute phase follow a similar trend.


Assuntos
Contusões , Traumatismos da Medula Espinal , Animais , Feminino , Masculino , Ratos , Modelos Animais de Doenças , Potenciais Somatossensoriais Evocados/fisiologia , Locomoção , Ratos Sprague-Dawley , Medula Espinal , Traumatismos da Medula Espinal/diagnóstico
5.
Adv Exp Med Biol ; 1293: 641-657, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33398847

RESUMO

Upconversion nanoparticle-mediated optogenetics enables remote delivery of upconverted visible light from a near-infrared light source to targeted neurons or areas, with the precision of a pulse of laser light in vivo for effective deep-tissue neuromodulation. Compared to conventional optogenetic tools, upconversion nanoparticle-based optogenetic techniques are less invasive and cause reduced inflammation with minimal levels of tissue damage. In addition to the optical stimulation, this design offers simultaneously temperature recording in proximity to the stimulated area. This chapter strives to provide life science researchers with an introduction to upconversion optogenetics, starting from the fundamental concept of photon upconversion and nanoparticle fabrication to the current state-of-the-art of surface engineering and device integration for minimally invasive neuromodulation.


Assuntos
Nanopartículas , Optogenética , Raios Infravermelhos , Neurônios , Fótons
6.
Angew Chem Int Ed Engl ; 58(27): 9262-9268, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087740

RESUMO

Cargo transport along axons, a physiological process mediated by motor proteins, is essential for neuronal function and survival. A current limitation in the study of axonal transport is the lack of a robust imaging technique with a high spatiotemporal resolution to visualize and quantify the movement of motor proteins in real-time and in different depth planes. Herein, we present a dynamic imaging technique that fully exploits the characteristics of upconversion nanoparticles. This technique can be used as a microscopic probe for the quantitative in situ tracking of retrograde transport neurons with single-particle resolution in multilayered cultures. This study may provide a powerful tool to reveal dynamic neuronal activity and intra-axonal transport function as well as any associated neurodegenerative diseases resulting from mutation or impairment in the axonal transport machinery.


Assuntos
Nanopartículas Metálicas/química , Proteínas Motores Moleculares/metabolismo , Neurônios/metabolismo , Animais , Axônios/química , Axônios/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Reprogramação Celular , Dineínas/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Raios Infravermelhos , Camundongos , Microscopia de Fluorescência , Neurônios/citologia , Transporte Proteico , Ratos
7.
Angew Chem Int Ed Engl ; 56(15): 4165-4169, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28295935

RESUMO

Drug toxicity is a long-standing concern of modern medicine. A typical anti-pain/fever drug paracetamol often causes hepatotoxicity due to peroxynitrite ONOO- . Conventional blood tests fail to offer real-time unambiguous visualization of such hepatotoxicity in vivo. Here we report a luminescent approach to evaluate acute hepatotoxicity in vivo by chromophore-conjugated upconversion nanoparticles. Upon injection, these nanoprobes mainly accumulate in the liver and the luminescence of nanoparticles remains suppressed owing to energy transfer to the chromophore. ONOO- can readily bleach the chromophore and thus recover the luminescence, the presence of ONOO- in the liver leads to fast restoring of the near-infrared emission. Taking advantages of the high tissue-penetration capability of near-infrared excitation/emission, these nanoprobes achieve real-time monitoring of hepatotoxicity in living animals, thereby providing a convenient screening strategy for assessing hepatotoxicity of synthetic drugs.

8.
Chemistry ; 22(31): 10801-7, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27245472

RESUMO

A crystal design strategy is described that generates hexagonal-phased NaYF4 :Nd/Yb@NaYF4 :Yb/Tm luminescent nanocrystals with the ability to emit light at 803 nm when illuminated at 745 nm. This is accomplished by taking advantage of the large absorption cross-section of Nd(3+) between 720 and 760 nm plus efficient spatial energy transfer and migration through Nd(3+) →Yb(3+) →Yb(3+) →Tm(3+) . Mechanistic investigations suggest that a cascaded two-photon energy transfer upconversion process underlies the emission mechanism. This protocol enables deep-tissue imaging to be achieved while mitigating the attenuation effect associated with the visible emission and the overheating constraint imposed by conventional 980 nm excitation.


Assuntos
Imageamento Tridimensional/métodos , Nanopartículas/química
9.
PLoS One ; 19(4): e0301430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578715

RESUMO

BACKGROUND: SCI is a time-sensitive debilitating neurological condition without treatment options. Although the central nervous system is not programmed for effective endogenous repairs or regeneration, neuroplasticity partially compensates for the dysfunction consequences of SCI. OBJECTIVE AND HYPOTHESIS: The purpose of our study is to investigate whether early induction of hypothermia impacts neuronal tissue compensatory mechanisms. Our hypothesis is that although neuroplasticity happens within the neuropathways, both above (forelimbs) and below (hindlimbs) the site of spinal cord injury (SCI), hypothermia further influences the upper limbs' SSEP signals, even when the SCI is mid-thoracic. STUDY DESIGN: A total of 30 male and female adult rats are randomly assigned to four groups (n = 7): sham group, control group undergoing only laminectomy, injury group with normothermia (37°C), and injury group with hypothermia (32°C +/-0.5°C). METHODS: The NYU-Impactor is used to induce mid-thoracic (T8) moderate (12.5 mm) midline contusive injury in rats. Somatosensory evoked potential (SSEP) is an objective and non-invasive procedure to assess the functionality of selective neuropathways. SSEP monitoring of baseline, and on days 4 and 7 post-SCI are performed. RESULTS: Statistical analysis shows that there are significant differences between the SSEP signal amplitudes recorded when stimulating either forelimb in the group of rats with normothermia compared to the rats treated with 2h of hypothermia on day 4 (left forelimb, p = 0.0417 and right forelimb, p = 0.0012) and on day 7 (left forelimb, p = 0.0332 and right forelimb, p = 0.0133) post-SCI. CONCLUSION: Our results show that the forelimbs SSEP signals from the two groups of injuries with and without hypothermia have statistically significant differences on days 4 and 7. This indicates the neuroprotective effect of early hypothermia and its influences on stimulating further the neuroplasticity within the upper limbs neural network post-SCI. Timely detection of neuroplasticity and identifying the endogenous and exogenous factors have clinical applications in planning a more effective rehabilitation and functional electrical stimulation (FES) interventions in SCI patients.


Assuntos
Hipotermia , Traumatismos da Medula Espinal , Humanos , Ratos , Masculino , Feminino , Animais , Traumatismos da Medula Espinal/terapia , Potenciais Somatossensoriais Evocados/fisiologia , Sistema Nervoso Central , Plasticidade Neuronal/fisiologia , Medula Espinal
10.
Biomater Sci ; 12(18): 4650-4663, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39150405

RESUMO

Upconversion nanoparticles (UCNPs) are a class of nanomaterials composed of lanthanide ions with great potential for paraclinical applications, especially in laboratory and imaging sciences. UCNPs have tunable optical properties and the ability to convert long-wavelength (low energy) excitation light into short-wavelength (high energy) emission in the ultraviolet (UV)-visible and near-infrared (NIR) spectral regions. The core-shell structure of UCNPs can be customized through chemical synthesis to meet the needs of different applications. The surface of UCNPs can also be tailored by conjugating small molecules and/or targeting ligands to achieve high specificity and selectivity, which are indispensable elements in biomedical applications. Specifically, coatings can enhance the water dispersion, biocompatibility, and efficiency of UCNPs, thereby optimizing their functionality and boosting their performance. In this context, multimodal imaging can provide more accurate in vivo information when combined with nuclear imaging. This article intends to provide a comprehensive review of the core structure, structure optimization, surface modification, and various recent applications of UCNPs in biomolecular detection, cell imaging, tumor diagnosis, and deep tissue imaging. We also present and discuss some of their critical challenges, limitations, and potential future directions.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Elementos da Série dos Lantanídeos/química , Nanopartículas/química , Humanos , Animais , Neoplasias/diagnóstico por imagem
11.
ACS Nano ; 18(3): 1820-1845, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38193927

RESUMO

The blood-brain barrier (BBB) is a specialized semipermeable structure that highly regulates exchanges between the central nervous system parenchyma and blood vessels. Thus, the BBB also prevents the passage of various forms of therapeutic agents, nanocarriers, and their cargos. Recently, many multidisciplinary studies focus on developing cargo-loaded nanoparticles (NPs) to overcome these challenges, which are emerging as safe and effective vehicles in neurotheranostics. In this Review, first we introduce the anatomical structure and physiological functions of the BBB. Second, we present the endogenous and exogenous transport mechanisms by which NPs cross the BBB. We report various forms of nanomaterials, carriers, and their cargos, with their detailed BBB uptake and permeability characteristics. Third, we describe the effect of regulating the size, shape, charge, and surface ligands of NPs that affect their BBB permeability, which can be exploited to enhance and promote neurotheranostics. We classify typical functionalized nanomaterials developed for BBB crossing. Fourth, we provide a comprehensive review of the recent progress in developing functional polymeric nanomaterials for applications in multimodal bioimaging, therapeutics, and drug delivery. Finally, we conclude by discussing existing challenges, directions, and future perspectives in employing functionalized nanomaterials for BBB crossing.


Assuntos
Nanopartículas , Nanoestruturas , Barreira Hematoencefálica , Nanoestruturas/química , Sistemas de Liberação de Medicamentos/métodos , Transporte Biológico , Nanopartículas/química , Encéfalo
12.
Crit Care Med ; 40(2): 573-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22001581

RESUMO

OBJECTIVE: Neuroprotection by hypothermia has been an important research topic over last two decades. In animal models of spinal cord injury, the primary focus has been assessing the effects of hypothermia on behavioral and histologic outcomes. Although a few studies have investigated electrophysiological changes in descending motor pathways with motor-evoked potentials recorded during cooling, we report here hypothermia induced increased electrical conduction in the ascending spinal cord pathways with somatosensory-evoked potentials in injured rats. In our experiments, these effects lasted long after the acute hypothermia and were accompanied by potential long-term improvements in motor movement. DESIGN: Laboratory investigation. SETTING: University medical school. SUBJECTS: Twenty-one female Lewis rats. INTERVENTIONS: Hypothermia. MEASUREMENTS AND MAIN RESULTS: All animals underwent spinal cord contusion with the NYU-Impactor by a 12.5-mm weight drop at thoracic vertebra T8. A group (n = 10) was randomly assigned for a systemic 2-hr hypothermia episode (32 ± 0.5°C) initiated approximately 2.0 hrs postinjury. Eleven rats were controls with postinjury temperature maintained at 37 ± 0.5°C for 2 hrs. The two groups underwent preinjury, weekly postinjury (up to 4 wks) somatosensory-evoked potential recordings and standard motor behavioral tests (BBB). Three randomly selected rats from each group were euthanized for histologic analysis at postinjury day 3 and day 28. Compared with controls, the hypothermia group showed significantly higher postinjury somatosensory-evoked potential amplitudes with longer latencies. The BBB scores were also higher immediately after injury and 4 wks later in the hypothermia group. Importantly, specific changes in the Basso, Beattie, Bresnahan scores in the hypothermia group (not seen in controls) indicated regained functions critical for motor control. Histologic evaluations showed more tissue preservation in the hypothermia group. CONCLUSIONS: After spinal cord injury, early systemic hypothermia provided significant neuroprotection weeks after injury through improved sensory electrophysiological signals in rats. This was accompanied by higher motor behavioral scores and more spared tissue in acute and postacute periods after injury.


Assuntos
Potenciais Somatossensoriais Evocados/fisiologia , Hipotermia Induzida/métodos , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/terapia , Animais , Temperatura Corporal , Modelos Animais de Doenças , Eletrodos Implantados , Feminino , Regeneração Nervosa/fisiologia , Distribuição Aleatória , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica , Valores de Referência , Medição de Risco , Resultado do Tratamento
13.
Adv Healthc Mater ; 11(11): e2102610, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35166052

RESUMO

Intravenous delivery of nanomaterials containing therapeutic agents and various cargos for treating neurological disorders is often constrained by low delivery efficacy due to difficulties in passing the blood-brain barrier (BBB). Nanoparticles (NPs) administered intranasally can move along olfactory and trigeminal nerves so that they do not need to pass through the BBB, allowing non-invasive, direct access to selective neural pathways within the brain. Hence, intranasal (IN) administration of NPs can effectively deliver drugs and genes into targeted regions of the brain, holding potential for efficacious disease treatment in the central nervous system (CNS). In this review, current methods for delivering conjugated NPs to the brain are primarily discussed. Distinctive potential mechanisms of therapeutic nanocomposites delivered via IN pathways to the brain are then discussed. Recent progress in developing functional NPs for applications in multimodal bioimaging, drug delivery, diagnostics, and therapeutics is also reviewed. This review is then concluded by discussing existing challenges, new directions, and future perspectives in IN delivery of nanomaterials.


Assuntos
Encéfalo , Nanopartículas , Administração Intranasal , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Polímeros/farmacologia
14.
Biomedicines ; 10(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35052784

RESUMO

Even nowadays, the question of whether hypothermia can genuinely be considered therapeutic care for patients with traumatic spinal cord injury (SCI) remains unanswered. Although the mechanisms of hypothermia action are yet to be fully explored, early hypothermia for patients suffering from acute SCI has already been implemented in clinical settings. This article discusses measures for inducing various forms of hypothermia and summarizes several hypotheses describing the likelihood of hypothermia mechanisms of action. We present our objective neuro-electrophysiological results and demonstrate that early hypothermia manifests neuroprotective effects mainly during the first- and second-month post-SCI, depending on the severity of the injury, time of intervening, duration, degree, and modality of inducing hypothermia. Nevertheless, eventually, its beneficial effects gradually but consistently diminish. In addition, we report potential complications and side effects for the administration of general hypothermia with a unique referment to the local hypothermia. We also provide evidence that instead of considering early hypothermia post-SCI a therapeutic approach, it is more a neuroprotective strategy in acute and sub-acute phases of SCI that mostly delay, but not entirely avoid, the natural history of the pathophysiological events. Indeed, the most crucial rationale for inducing early hypothermia is to halt these devastating inflammatory and apoptotic events as early and as much as possible. This, in turn, creates a larger time-window of opportunity for physicians to formulate and administer a well-designed personalized treatment for patients suffering from acute traumatic SCI.

15.
Proteomics ; 11(20): 4007-20, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21770034

RESUMO

Oligodendrocytes (OLs) are glial cells of the central nervous system, which produce myelin. Cultured OLs provide immense therapeutic opportunities for treating a variety of neurological conditions. One of the most promising sources for such therapies is human embryonic stem cells (ESCs) as well as providing a model to study human OL development. For these purposes, an investigation of proteome level changes is critical for understanding the process of OL differentiation. In this report, an iTRAQ-based quantitative proteomic approach was used to study multiple steps during OL differentiation including neural progenitor cells, glial progenitor cells and oligodendrocyte progenitor cells (OPCs) compared to undifferentiated ESCs. Using a 1% false discovery rate cutoff, ∼3145 proteins were quantitated and several demonstrated progressive stage-specific expression. Proteins such as transferrin, neural cell adhesion molecule 1, apolipoprotein E and wingless-related MMTV integration site 5A showed increased expression from the neural progenitor cell to the OPC stage. Several proteins that have demonstrated evidence or been suspected in OL maturation were also found upregulated in OPCs including fatty acid-binding protein 4, THBS1, bone morphogenetic protein 1, CRYAB, transferrin, tenascin C, COL3A1, TGFBI and EPB41L3. Thus, by providing the first extensive proteomic profiling of human ESC differentiation into OPCs, this study provides many novel proteins that are potentially involved in OL development.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Oligodendroglia/citologia , Proteômica , Células-Tronco/citologia , Animais , Linhagem da Célula , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Imuno-Histoquímica , Camundongos , Tempo
16.
Glia ; 59(3): 499-510, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21264955

RESUMO

Transplantation of glial progenitor cells results in transplant-derived myelination and improved function in rodents with genetic dysmyelination or chemical demyelination. However, glial cell transplantation in adult CNS inflammatory demyelinating models has not been well studied. Here we transplanted human glial-restricted progenitor (hGRP) cells into the spinal cord of adult rats with inflammatory demyelination, and monitored cell fate in chemically immunosuppressed animals. We found that hGRPs migrate extensively, expand within inflammatory spinal cord lesions, do not form tumors, and adopt a mature glial phenotype, albeit at a low rate. Human GRP-transplanted rats, but not controls, exhibited preserved electrophysiological conduction across the spinal cord, though no differences in behavioral improvement were noted between the two groups. Although these hGRPs myelinated extensively after implantation into neonatal shiverer mouse brain, only marginal remyelination was observed in the inflammatory spinal cord demyelination model. The low rate of transplant-derived myelination in adult rat spinal cord may reflect host age, species, transplant environment/location, and/or immune suppression regime differences. We conclude that hGRPs have the capacity to myelinate dysmyelinated neonatal rodent brain and preserve conduction in the inflammatory demyelinated adult rodent spinal cord. The latter benefit is likely dependent on trophic support and suggests further exploration of potential of glial progenitors in animal models of chronic inflammatory demyelination.


Assuntos
Doenças Desmielinizantes/cirurgia , Mediadores da Inflamação/fisiologia , Mielite/cirurgia , Neuroglia/fisiologia , Neuroglia/transplante , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Animais , Animais Recém-Nascidos , Proliferação de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/fisiopatologia , Feminino , Sobrevivência de Enxerto/fisiologia , Humanos , Camundongos , Camundongos Knockout , Camundongos Mutantes Neurológicos , Mielite/patologia , Mielite/fisiopatologia , Neuroglia/citologia , Neuroglia/patologia , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica/fisiologia , Células-Tronco/citologia , Células-Tronco/patologia
17.
Brain Res Bull ; 173: 22-27, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33991605

RESUMO

In this paper, we investigate the forelimbs somatosensory evoked potential (SSEP) signals, which are representative of the integrity of ascending sensory pathways and their stability as well as function, recorded from corresponding cortices, post thoracic spinal cord injury (SCI). We designed a series of distinctive transection SCI to investigate whether forelimbs SSEPs change after right T10 hemi-transection, T8 and T10 double hemi-transection and T8 complete transection in rat model of SCI. We used electrical stimuli to stimulate median nerves and recorded SSEPs from left and right somatosensory areas of both cortices. We monitored pre-injury baseline and verified changes in forelimbs SSEP signals on Days 4, 7, 14, and 21 post-injury. We previously characterized hindlimb SSEP changes for the abovementioned transection injuries. The focus of this article is to investigate the quality and quantity of changes that may occur in the forelimb somatosensory pathways post-thoracic transection SCI. It is important to test the stability of forelimb SSEPs following thoracic SCI because of their potential utility as a proxy baseline for the traumatic SCIs in clinical cases wherein there is no opportunity to gather baseline of the lower extremities. We observed that the forelimb SSEP amplitudes increased following thoracic SCI but gradually returned to the baseline. Despite changes found in the raw signals, statistical analysis found forelimb SSEP signals become stable relatively soon. In summary, though there are changes in value (with p > 0.05), they are not statistically significant. Therefore, the null hypothesis that the mean of the forelimb SSEP signals are the same across multiple days after injury onset cannot be rejected during the acute phase.


Assuntos
Potenciais Somatossensoriais Evocados/fisiologia , Membro Anterior/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Vértebras Torácicas/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Ratos , Ratos Sprague-Dawley
18.
Ann Biomed Eng ; 49(1): 57-74, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33140242

RESUMO

Current developments being made in upper limb prostheses are focused on replacing lost sensory information to the amputees. Providing sensory stimulation from the prosthesis can directly improve control over the prosthetic and provide a sense of body ownership. The focus of this review article is on recent developments while including foundational knowledge for some of the critical concepts in neural prostheses. Reported concepts follow the flow of information from sensors to signal processing, with emphasis on texture recognition, and then to sensory stimulation strategies that reestablish the lost sensory feedback loop. Prosthetic sensors are used to detect the physical environment, converting pressure, force, and position into electrical signals. The electrical signals can then be processed in an effort to identify the surrounding environment using distinctive characteristics such as stiffness and texture. In order for the amputee to use this information in a natural manner, there must be real-time sensory stimulation, perception, and motor control of the prosthesis. Although truly complete sensory replacement has not yet been realized, some basic percepts can be partially restored, allowing progress towards a more realistic prosthesis with natural sensations.


Assuntos
Membros Artificiais , Retroalimentação Sensorial , Extremidade Superior/fisiologia , Estimulação Elétrica , Humanos , Extremidade Superior/inervação
19.
Neurol Sci ; 31(5): 595-601, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20508959

RESUMO

A reliable outcome measurement is needed to assess the effects of experimental lesions in the rat spinal cord as well as to assess the benefits of therapies designed to modulate them. The Basso, Beattie, and Bresnahan (BBB) behavioral scores can be indicative of the functionality in motor pathways. However, since lesions are often induced in the more accessible dorsal parts associated with the sensory pathways, the BBB scores may not be ideal measure of the disability. We propose somatosensory evoked potential (SEP) as a complementary measure to assess the integrity of sensory pathways. We used the focal experimental autoimmune encephalomyelitis (EAE) model, in which focal demyelinating lesions were induced by injecting cytokine-ethidium bromide into dorsal white matter after MOG-IFA immunization. Both the SEP and BBB measures reflected injury; however, the SEP was uniformly and consistently altered after the injury whereas the BBB varied widely. The results suggest that the SEP measures are more sensitive and reliable markers of focal spinal cord demyelination compared to the behavioral measures like the BBB score.


Assuntos
Encefalomielite Autoimune Experimental/fisiopatologia , Potenciais Somatossensoriais Evocados/fisiologia , Movimento/fisiologia , Análise de Variância , Animais , Comportamento Animal , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Extremidades/inervação , Feminino , Proteínas da Mielina , Glicoproteína Associada a Mielina/efeitos adversos , Glicoproteína Mielina-Oligodendrócito , Ratos , Ratos Endogâmicos Lew , Tempo de Reação/fisiologia , Índice de Gravidade de Doença , Medula Espinal/patologia , Fatores de Tempo
20.
Int J Neurosci ; 120(4): 305-13, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20374080

RESUMO

This study utilized a contusion model of spinal cord injury (SCI) in rats using the standardized NYU-MASCIS impactor, after which oligodendrocyte progenitor cells (OPCs) derived from human embryonic stem cell (ESC) were transplanted into the spinal cord to study their survival and migration route toward the areas of injury. One critical aspect of successful cell-based SCI therapy is the time of injection following injury. OPCs were injected at two clinically relevant times when most damage occurs to the surrounding tissue, 3 and 24 hours following injury. Migration and survivability after eight days was measured postmortem. In-vitro immunofluorescence revealed that most ESC-derived OPCs expressed oligodendrocyte markers, including CNPase, GalC, Olig1, O4, and O1. Results showed that OPCs survived when injected at the center of injury and migrated away from the injection sites after one week. Histological sections revealed integration of ESC-derived OPCs into the spinal cord with contusion injury without disruption to the parenchyma. Cells survived for a minimum of eight days after injury, without tumor or cyst formation. The extent of injury and effect of early cell transplant was measured using behavioral and electrophysiological assessments which demonstrated increased neurological responses in rats transplanted with OPCs compared to controls.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Oligodendroglia/fisiologia , Traumatismos da Medula Espinal/cirurgia , Animais , Antígenos/metabolismo , Modelos Animais de Doenças , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Gangliosídeos/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Antígenos O/metabolismo , Proteoglicanas/metabolismo , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição SOXE/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Transplante de Células-Tronco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA