Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 295(36): 12661-12673, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32669362

RESUMO

The discovery of activating epidermal growth factor receptor (EGFR) mutations spurred the use of EGFR tyrosine kinase inhibitors (TKIs), such as erlotinib, as the first-line treatment of lung cancers. We previously reported that differential degradation of TKI-sensitive (e.g. L858R) and resistant (T790M) EGFR mutants upon erlotinib treatment correlates with drug sensitivity. We also reported that SMAD ubiquitination regulatory factor 2 (SMURF2) ligase activity is important in stabilizing EGFR. However, the molecular mechanisms involved remain unclear. Here, using in vitro and in vivo ubiquitination assays, MS, and superresolution microscopy, we show SMURF2-EGFR functional interaction is important for EGFR stability and response to TKI. We demonstrate that L858R/T790M EGFR is preferentially stabilized by SMURF2-UBCH5 (an E3-E2)-mediated polyubiquitination. We identified four lysine residues as the sites of ubiquitination and showed that replacement of one of them with acetylation-mimicking glutamine increases the sensitivity of mutant EGFR to erlotinib-induced degradation. We show that SMURF2 extends membrane retention of EGF-bound EGFR, whereas SMURF2 knockdown increases receptor sorting to lysosomes. In lung cancer cell lines, SMURF2 overexpression increased EGFR levels, improving TKI tolerance, whereas SMURF2 knockdown decreased EGFR steady-state levels and sensitized lung cancer cells. Overall, we propose that SMURF2-mediated polyubiquitination of L858R/T790M EGFR competes with acetylation-mediated receptor internalization that correlates with enhanced receptor stability; therefore, disruption of the E3-E2 complex may be an attractive target to overcome TKI resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cloridrato de Erlotinib/farmacologia , Neoplasias Pulmonares/enzimologia , Mutação de Sentido Incorreto , Inibidores de Proteínas Quinases/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Substituição de Aminoácidos , Animais , Células CHO , Cricetulus , Resistencia a Medicamentos Antineoplásicos/genética , Estabilidade Enzimática/efeitos dos fármacos , Estabilidade Enzimática/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Células MCF-7 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
2.
Proc Natl Acad Sci U S A ; 110(7): E575-82, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23341611

RESUMO

The molecular mechanism of antimony-resistant Leishmania donovani (Sb(R)LD)-driven up-regulation of IL-10 and multidrug-resistant protein 1 (MDR1) in infected macrophages (Ms) has been investigated. This study showed that both promastigote and amastigote forms of Sb(R)LD, but not the antimony-sensitive form of LD, express a unique glycan with N-acetylgalactosamine as a terminal sugar. Removal of it either by enzyme treatment or by knocking down the relevant enzyme, galactosyltransferase in Sb(R)LD (KD Sb(R)LD), compromises the ability to induce the above effects. Infection of Ms with KD Sb(R)LD enhanced the sensitivity toward antimonials compared with infection with Sb(R)LD, and infection of BALB/c mice with KD Sb(R)LD caused significantly less organ parasite burden compared with infection induced by Sb(R)LD. The innate immune receptor, Toll-like receptor 2/6 heterodimer, is exploited by Sb(R)LD to activate ERK and nuclear translocation of NF-κB involving p50/c-Rel leading to IL-10 induction, whereas MDR1 up-regulation is mediated by PI3K/Akt and the JNK pathway. Interestingly both recombinant IL-10 and Sb(R)LD up-regulate MDR1 in M with different time kinetics, where phosphorylation of PI3K was noted at 12 h and 48 h, respectively, but Ms derived from IL-10(-/-) mice are unable to show MDR1 up-regulation on infection with Sb(R)LD. Thus, it is very likely that an IL-10 surge is a prerequisite for MDR1 up-regulation. The transcription factor important for IL-10-driven MDR1 up-regulation is c-Fos/c-Jun and not NF-κB, as evident from studies with pharmacological inhibitors and promoter mapping with deletion constructs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/imunologia , Regulação da Expressão Gênica/imunologia , Interleucina-10/imunologia , Leishmania donovani/imunologia , Transdução de Sinais/imunologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antimônio , Western Blotting , Imunoprecipitação da Cromatina , Cricetinae , Primers do DNA/genética , Resistência a Medicamentos/imunologia , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Imunoprecipitação , Interleucina-10/genética , Interleucina-10/metabolismo , Macrófagos , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fos/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 2 Toll-Like/imunologia , Receptor 6 Toll-Like/imunologia
3.
Appl Microbiol Biotechnol ; 96(3): 647-62, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22763845

RESUMO

Small quantity of energetic material coated on the inner wall of a polymer tube is proposed as a new method to generate micro-shock waves in the laboratory. These micro-shock waves have been harnessed to develop a novel method of delivering dry particle and liquid jet into the target. We have generated micro-shock waves with the help of reactive explosive compound [high melting explosive (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and traces of aluminium] coated polymer tube, utilising ∼9 J of energy. The detonation process is initiated electrically from one end of the tube, while the micro-shock wave followed by the products of detonation escape from the open end of the polymer tube. The energy available at the open end of the polymer tube is used to accelerate tungsten micro-particles coated on the other side of the diaphragm or force a liquid jet out of a small cavity filled with the liquid. The micro-particles deposited on a thin metal diaphragm (typically 100-µm thick) were accelerated to high velocity using micro-shock waves to penetrate the target. Tungsten particles of 0.7 µm diameter have been successfully delivered into agarose gel targets of various strengths (0.6-1.0 %). The device has been tested by delivering micro-particles into potato tuber and Arachis hypogaea Linnaeus (ground nut) stem tissue. Along similar lines, liquid jets of diameter ∼200-250 µm (methylene blue, water and oils) have been successfully delivered into agarose gel targets of various strengths. Successful vaccination against murine salmonellosis was demonstrated as a biological application of this device. The penetration depths achieved in the experimental targets are very encouraging to develop a future device for biological and biomedical applications.


Assuntos
Substâncias Explosivas/química , Injeções a Jato/métodos , Fenômenos Mecânicos , Material Particulado/administração & dosagem , Soluções/administração & dosagem , Animais , Arachis , Camundongos , Solanum tuberosum , Vacinação/métodos
4.
J Clin Microbiol ; 47(8): 2435-41, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19535522

RESUMO

Typhoid fever is becoming an ever increasing threat in the developing countries. We have improved considerably upon the existing PCR-based diagnosis method by designing primers against a region that is unique to Salmonella enterica subsp. enterica serovar Typhi and Salmonella enterica subsp. enterica serovar Paratyphi A, corresponding to the STY0312 gene in S. Typhi and its homolog SPA2476 in S. Paratyphi A. An additional set of primers amplify another region in S. Typhi CT18 and S. Typhi Ty2 corresponding to the region between genes STY0313 to STY0316 but which is absent in S. Paratyphi A. The possibility of a false-negative result arising due to mutation in hypervariable genes has been reduced by targeting a gene unique to typhoidal Salmonella serovars as a diagnostic marker. The amplified region has been tested for genomic stability by amplifying the region from clinical isolates of patients from various geographical locations in India, thereby showing that this region is potentially stable. These set of primers can also differentiate between S. Typhi CT18, S. Typhi Ty2, and S. Paratyphi A, which have stable deletions in this specific locus. The PCR assay designed in this study has a sensitivity of 95% compared to the Widal test which has a sensitivity of only 63%. As observed, in certain cases, the PCR assay was more sensitive than the blood culture test was, as the PCR-based detection could also detect dead bacteria.


Assuntos
Bacteriemia/microbiologia , Primers do DNA/genética , Reação em Cadeia da Polimerase/métodos , Infecções por Salmonella/diagnóstico , Infecções por Salmonella/microbiologia , Salmonella paratyphi A/isolamento & purificação , Salmonella typhi/isolamento & purificação , Bacteriemia/diagnóstico , DNA Bacteriano/química , DNA Bacteriano/genética , Diagnóstico Diferencial , Humanos , Índia , Dados de Sequência Molecular , Salmonella paratyphi A/classificação , Salmonella paratyphi A/genética , Salmonella typhi/classificação , Salmonella typhi/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA , Febre Tifoide
5.
Braz J Infect Dis ; 23(5): 281-290, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31421108

RESUMO

PURPOSE AND OBJECTIVES: Detection of drug resistance plays a crucial role in tuberculosis (TB) treatment and prevention of Mycobacterium tuberculosis (MTB) transmission. The aim of this study was to determine the levels and patterns of resistance of MTB isolates to two key anti-TB drugs (rifampicin, RIF and isoniazid, INH) and the type of mutations in drug resistance genes (rpoB, katG and inhA) of the isolates at the southern coastal region of Andhra Pradesh, India, using commercially available GenoType MTBDRplus assay under the Revised National TB Control Program. METHODS: GenoType MTBDRplus assay was performed on 2859 sputum smear-positive samples and the mutations in the genes responsible for resistance (rpoB, katG and inhA) were analyzed. RESULTS: Among the line probe assay (LPA) valid isolates (2894), 1990 (68.76%) were drug susceptible, 437 (15.13%) were INH monoresistant, 104 (3.59%) were RIF monoresistant, and 363 (12.54%) were multidrug resistant. Codon 531 of rpoB gene and codon 315 of katG gene were found to have the highest mutation frequency for RIF resistance (270/467; 57.81%) and INH resistance (501/800; 62.62%), respectively. The RIF resistant rpoB mutations observed in the samples were S531L (57.81%), H526Y (8.56%), D516V (6.42%), and H526D (6.20%). Mutations in inhA promoter were found in 24.75% INH resistant isolates with C15T being the most common (85.85%). The turnaround times of the LPA test were from 48 to72h. CONCLUSION: The frequency of mutations in MTB in the coastal region of Andhra Pradesh, India, is similar to that in retreatment cases from most settings, with close to 80% in rpoB codon 516, 526, and 531, and over 80% in codons katG 315 and/or inhA promoter. The increase in INH monoresistance underlines the need for greater enforcement of national TB control programs.


Assuntos
Antibióticos Antituberculose/farmacologia , Mycobacterium tuberculosis/genética , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/microbiologia , Adulto , Feminino , Genótipo , Humanos , Índia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mutação/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Fatores de Risco , Adulto Jovem
6.
Artigo | IMSEAR | ID: sea-216057

RESUMO

Objective: To computationally model the CTX-M-5 ?-lactamase and establish its structure, which is exclusively present in human-associated Salmonella. Methods: The CTX-M-5 aminoacid sequence (Uniprot ID:O65975) of Salmonella enterica subsp. enterica serovar typhimurium was retrieved from UniProt database and subjected to homology modeling using MODELLER 9v7. The homology models were duly validated using RAMPAGE tool by generating Ramachandran plots, ERRAT graphs, and ProSA score. DoGSiteScorer server and ConSurf server were used to detect the cavities, pockets, and clefts to identify conserved amino acid sites in the predicted model. Subsequently, the modeled structure was docked using CLC Drug Discovery Workbench against proven drugs and known inhibitors. Results: Obtained high-quality homology model with 91.7% of the residues in favorable regions in Ramachandran plot and qualified in other quality parameters. Docking studies resulted in a higher dock score for PNK (D-benzylpenicilloic acid) molecule when compared to other reported inhibitors. Conclusion: This in silico study suggests that the compound PNK could be an efficient ligand for CTX-M-5 ?-lactamase and serve as a potent inhibitor of CTX-M-5.

7.
Neoplasia ; 16(2): 115-28, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24709419

RESUMO

Attempts to target mutant KRAS have been unsuccessful. Here, we report the identification of Smad ubiquitination regulatory factor 2 (SMURF2) and UBCH5 as a critical E3:E2 complex maintaining KRAS protein stability. Loss of SMURF2 either by small interfering RNA/short hairpin RNA (siRNA/shRNA) or by overexpression of a catalytically inactive mutant causes KRAS degradation, whereas overexpression of wild-type SMURF2 enhances KRAS stability. Importantly, mutant KRAS is more susceptible to SMURF2 loss where protein half-life decreases from >12 hours in control siRNA-treated cells to <3 hours on Smurf2 silencing, whereas only marginal differences were noted for wild-type protein. This loss of mutant KRAS could be rescued by overexpressing a siRNA-resistant wild-type SMURF2. Our data further show that SMURF2 monoubiquitinates UBCH5 at lysine 144 to form an active complex required for efficient degradation of a RAS-family E3, ß-transducing repeat containing protein 1 (ß-TrCP1). Conversely, ß-TrCP1 is accumulated on SMURF2 loss, leading to increased KRAS degradation. Therefore, as expected, ß-TrCP1 knockdown following Smurf2 siRNA treatment rescues mutant KRAS loss. Further, we identify two conserved proline (P) residues in UBCH5 critical for SMURF2 interaction; mutation of either of these P to alanine also destabilizes KRAS. As a proof of principle, we demonstrate that Smurf2 silencing reduces the clonogenic survival in vitro and prolongs tumor latency in vivo in cancer cells including mutant KRAS-driven tumors. Taken together, we show that SMURF2:UBCH5 complex is critical in maintaining KRAS protein stability and propose that targeting such complex may be a unique strategy to degrade mutant KRAS to kill cancer cells.


Assuntos
Proteínas Proto-Oncogênicas/metabolismo , Enzimas de Conjugação de Ubiquitina/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Proteínas Contendo Repetições de beta-Transducina/fisiologia , Proteínas ras/metabolismo , Adenocarcinoma , Adenocarcinoma de Pulmão , Motivos de Aminoácidos , Animais , Feminino , Expressão Gênica , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Neoplasias Pulmonares , Camundongos Nus , Transplante de Neoplasias , Ligação Proteica , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Ubiquitinação , Proteínas ras/genética
8.
PLoS One ; 8(2): e57290, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468959

RESUMO

The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT). Although tumor necrosis factor-alpha (TNF-α) signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNF-α production remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP), in radiation-induced TNF-α production by macrophages. For in vitro studies we irradiated (4 Gy) either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy) and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (-/-) mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTP(Ser178) phosphorylation and protein degradation and a simultaneous increase in TNF-α production in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNF-α production. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.


Assuntos
Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Tristetraprolina/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Pulmão/citologia , Pulmão/metabolismo , Pulmão/efeitos da radiação , Macrófagos Alveolares/metabolismo , Camundongos , Fosforilação , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Virulence ; 3(2): 122-35, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22460643

RESUMO

During the course of infection, Salmonella has to face several potentially lethal environmental conditions, one such being acidic pH. The ability to sense and respond to the acidic pH is crucial for the survival and replication of Salmonella. The physiological role of one gene (STM1485) involved in this response, which is upregulated inside the host cells (by 90- to 113-fold) is functionally characterized in Salmonella pathogenesis. In vitro, the ΔSTM1485 neither exhibited any growth defect at pH 4.5 nor any difference in the acid tolerance response. The ΔSTM1485 was compromised in its capacity to proliferate inside the host cells and complementation with STM1485 gene restored its virulence. We further demonstrate that the surface translocation of Salmonella pathogenicity island-2 (SPI-2) encoded translocon proteins, SseB and SseD were reduced in the ΔSTM1485. The increase in co-localization of this mutant with lysosomes was also observed. In addition, the ΔSTM1485 displayed significantly reduced competitive indices (CI) in spleen, liver and mesenteric lymph nodes in murine typhoid model when infected by intra-gastric route. Based on these results, we conclude that the acidic pH induced STM1485 gene is essential for intracellular replication of Salmonella.


Assuntos
Proteínas de Bactérias/biossíntese , Ácidos Carboxílicos/metabolismo , Citoplasma/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/fisiologia , Estresse Fisiológico , Fatores de Virulência/biossíntese , Animais , Carga Bacteriana , Proteínas de Bactérias/genética , Ácidos Carboxílicos/química , Linhagem Celular , Citoplasma/química , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Teste de Complementação Genética , Humanos , Fígado/microbiologia , Linfonodos/microbiologia , Lisossomos/microbiologia , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Febre Paratifoide/microbiologia , Febre Paratifoide/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Baço/microbiologia , Regulação para Cima , Virulência , Fatores de Virulência/genética
10.
Clin Vaccine Immunol ; 18(4): 539-45, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21307276

RESUMO

Shock waves are one of the most efficient mechanisms of energy dissipation observed in nature. In this study, utilizing the instantaneous mechanical impulse generated behind a micro-shock wave during a controlled explosion, a novel nonintrusive needleless vaccine delivery system has been developed. It is well-known that antigens in the epidermis are efficiently presented by resident Langerhans cells, eliciting the requisite immune response, making them a good target for vaccine delivery. Unfortunately, needle-free devices for epidermal delivery have inherent problems from the perspective of the safety and comfort of the patient. The penetration depth of less than 100 µm in the skin can elicit higher immune response without any pain. Here we show the efficient utilization of our needleless device (that uses micro-shock waves) for vaccination. The production of liquid jet was confirmed by high-speed microscopy, and the penetration in acrylamide gel and mouse skin was observed by confocal microscopy. Salmonella enterica serovar Typhimurium vaccine strain pmrG-HM-D (DV-STM-07) was delivered using our device in the murine salmonellosis model, and the effectiveness of the delivery system for vaccination was compared with other routes of vaccination. Vaccination using our device elicits better protection and an IgG response even at a lower vaccine dose (10-fold less) compared to other routes of vaccination. We anticipate that our novel method can be utilized for effective, cheap, and safe vaccination in the near future.


Assuntos
Injeções a Jato/métodos , Vacinas contra Salmonella/administração & dosagem , Vacinas contra Salmonella/imunologia , Estruturas Animais/microbiologia , Animais , Anticorpos Antibacterianos/sangue , Carga Bacteriana , Modelos Animais de Doenças , Humanos , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Salmonelose Animal/imunologia , Salmonelose Animal/prevenção & controle , Salmonella typhimurium/imunologia , Pele/patologia , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA