Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404883, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747260

RESUMO

Single-atom catalysts (SACs) are an emerging class of materials, leveraging maximum atom utilization and distinctive structural and electronic properties to bridge heterogeneous and homogeneous catalysis. Direct imaging methods, such as aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, are commonly applied to confirm the atomic dispersion of active sites. However, interpretations of data from these techniques can be challenging due to simultaneous contributions to intensity from impurities introduced during synthesis processes, as well as any variation in position relative to the focal plane of the electron beam. To address this matter, this paper presents a comprehensive study on two representative SACs containing isolated nickel or copper atoms. Spectroscopic techniques, including X-ray absorption spectroscopy, were employed to prove the high metal dispersion of the catalytic atoms. Employing scanning transmission electron microscopy imaging combined with single-atom-sensitive electron energy loss spectroscopy, we scrutinized thin specimens of the catalysts to provide an unambiguous chemical identification of the observed single-atom species and thereby distinguish impurities from active sites at the single-atom level. Overall, the study underscores the complexity of SACs characterization and establishes the importance of the use of spectroscopy in tandem with imaging at atomic resolution to fully and reliably characterize single-atom catalysts.

2.
J Colloid Interface Sci ; 673: 943-957, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38917669

RESUMO

The interest in using carbon nitrides (CN) for CO2 conversion has stimulated extensive research on CN synthesis. Herein, we report the synthesis of two novel CN materials using low-cost commercially available precursors at low temperatures in a short duration of time. Two CN materials, one derived from 5-amino tetrazole (named 4NZ-CN) and the other derived from 3, 5-diamino-1, 2, 4-triazole (named 3NZ-CN) precursors, are prepared by refluxing these precursors for 2 h at 100 °C. 4NZ-CN and 3NZ-CN catalysts show higher surface areas (55.80 and 52.00 m2 g-1) and more basic sites (10.05 and 5.65 mmol g-1) than the conventional graphitic carbon nitride (g-C3N4) derived from melamine, for which the corresponding values are 9.20 m2 g-1 and 0.62 mmol g-1, respectively. In addition, both CN exhibit a 3-fold higher catalytic activity for CO2 cycloaddition to epoxides than g-C3N4. The structure-activity relationship was ascertained using a combination of experimental and computational studies, and a catalytic mechanism was proposed. This work provides a facile strategy for the synthesis of novel CN materials at relatively low temperatures, and the developed catalysts show remarkable performance in the conversion of CO2 to value-added chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA