Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 475: 80-90, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33741348

RESUMO

Iron (Fe) is used in various cellular functions, and a constant balance between its uptake, transport, storage, and use is necessary to maintain its homeostasis in the body. Changes in Fe metabolism with a consequent overload of this metal are related to neurological changes and cover a broad spectrum of diseases, mainly when these changes occur during the embryonic period. This work aimed to evaluate the effect of exposure to Fe overload during the embryonic period of Drosophila melanogaster. Progenitor flies (male and female) were exposed to ferrous sulfate (FeSO4) for ten days in concentrations of 0.5, 1, and 5 â€‹mM. After mating and oviposition, the progenitors were removed and the treatment bottles preserved, and the number of daily hatches and cumulative hatching of the first filial generation (F1) were counted. Subsequently, F1 flies (separated by sex) were subjected to behavioral tests such as negative geotaxis test, open field test, grooming, and aggression test. They have evaluated the levels of dopamine (DA), serotonin (5-HT), octopamine (OA), tryptophan and tyrosine hydroxylase (TH), acetylcholinesterase, reactive species, and the levels of Fe in the progenitor flies and F1. The Fe levels of F1 flies are directly proportional to what is incorporated during the period of embryonic development; we also observed a delay in hatching and a reduction in the number of the hatch of F1 flies exposed during the embryonic period to the 5mM Fe diet, a fact that may be related to the reduction of the cell viability of the ovarian tissue of progenitor flies. The flies exposed to Fe (1 and 5 â€‹mM) showed an increase in locomotor activity (hyperactivity) and a significantly higher number of repetitive movements. In addition to a high number of aggressive encounters when compared to control flies. We can also observe an increase in the levels of biogenic amines DA and 5-HT and an increase in TH activity in flies exposed to Fe (1 and 5 â€‹mM) compared to the control group. We conclude that the hyperactive-like behavior demonstrated in both sexes by F1 flies exposed to Fe may be associated with a dysregulation in the levels of DA and 5-HT since Fe is a cofactor of TH, which had its activity increased in this study. Therefore, more attention is needed during the embryonic development period for exposure to Fe overload.


Assuntos
Drosophila melanogaster/embriologia , Hipercinese/fisiopatologia , Sobrecarga de Ferro/embriologia , Animais , Comportamento Animal/fisiologia , Aminas Biogênicas/metabolismo , Aminas Biogênicas/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipercinese/etiologia , Ferro/metabolismo , Ferro/fisiologia , Ferro/toxicidade , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/fisiopatologia , Locomoção/efeitos dos fármacos , Masculino , Exposição Materna , Atividade Motora/efeitos dos fármacos , Oxirredução , Exposição Paterna
2.
Artigo em Inglês | MEDLINE | ID: mdl-36940893

RESUMO

ß-carotene-loaded nanoparticles improves absorption by increasing bioavailability. The Drosophila melanogaster model of Parkinson's disease must be helpful in investigating potential neuroprotective effects. Four groups of four-day-old flies were exposed to: (1) control; (2) diet containing rotenone (500 µM); (3) ß-carotene-loaded nanoparticles (20 µM); (4) ß-carotene-loaded nanoparticles and rotenone for 7 days. Then, the percentage of survival, geotaxis tests, open field, aversive phototaxis and food consumption were evaluated. At the end of the behaviors, the analyses of the levels of reactive species (ROS), thiobarbituric acid reactive substances (TBARS), catalase (CAT) and superoxide dismutase (SOD) activity was carried out, as well as an evaluation of the levels of dopamine and acetylcholinesterase (AChE) activity, in the head of flies. Nanoparticles loaded with ß-carotene were able to improve motor function, memory, survival and also restored the oxidative stress indicators (CAT, SOD, ROS and TBARS), dopamine levels, AChE activity after exposure to rotenone. Overall, nanoparticles loaded with ß-carotene showed significant neuroprotective effect against damage induced by the Parkinson-like disease model, emerging as a possible treatment. Overall, ß-carotene-loaded nanoparticles presented significant neuroprotective effect against damage induced by model of Parkinson-like disease, emerging as a possible treatment.


Assuntos
Nanopartículas , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Drosophila melanogaster , beta Caroteno/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Dopamina , Rotenona , Espécies Reativas de Oxigênio , Fármacos Neuroprotetores/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico , Acetilcolinesterase/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Modelos Animais de Doenças
3.
Environ Sci Pollut Res Int ; 28(14): 17519-17531, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33403631

RESUMO

Manganese (Mn) is an essential element that, in excess, seems to be involved in the development of different neurodegenerative conditions. Gamma-oryzanol (Ory) was previously reported to possess antioxidant and neuroprotective properties. Thus, we conducted this study to test the hypothesis that Ory can also protect flies in an Mn intoxication model. Adult wild-type flies were fed over 10 days with Mn (5 mM) and/or Ory (25 µM). Flies treated with Mn had a decrease in locomotor activity and a higher mortality rate compared to those in controls. Mn-treated flies also had a significant increase in acetylcholinesterase (AChE) activity, in Mn accumulation and in oxidative stress markers. Moreover, flies treated with Mn exhibited a significant decrease in dopamine levels and in tyrosine hydroxylase activity, as well as in mitochondrial and cellular viability. Particularly important, Ory protected against mortality and avoided locomotor and biochemical changes associated with Mn exposure. However, Ory did not prevent the accumulation of Mn. The present results support the notion that Ory effectively attenuates detrimental changes associated with Mn exposure in Drosophila melanogaster, reinforcing its neuroprotective action/potential.


Assuntos
Drosophila melanogaster , Manganês , Animais , Antioxidantes , Manganês/toxicidade , Estresse Oxidativo , Fenilpropionatos
4.
Neurotoxicology ; 85: 79-89, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34000340

RESUMO

Neurodevelopmental disorders, such as Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD) are responsible for behavioral deficits in children. Imidacloprid is a nicotinic acetylcholine receptor agonist, capable of causing behavioral changes in Drosophila melanogaster, similar to the ADHD-like phenotypes. We assess whether behavioral damage induced by imidacloprid exposure in Drosophila melanogaster is associated with neurochemical changes and whether these changes are similar to those observed in neurodevelopmental disorders such as ASD and ADHD. The fruit flies were divided into four groups, exposed to either a standard diet (control) or a diet containing imidacloprid (200, 400 or 600 ρM) and allowed to mate for 7 days. After hatching, the progeny was subjected to in vivo and ex vivo tests. The ones exposed to imidacloprid showed an increase in hyperactivity, aggressiveness, anxiety and repetitive movements, as well as, a decrease in social interaction. Furthermore, exposure to imidacloprid decreased dopamine levels, cell viability and increased oxidative stress in the flies' progeny. These results demonstrated that the behavioral damage induced by imidacloprid exposure involves a reduction in dopamine levels and oxidative stress and that these neurochemical changes are in line with the events that occur in ASD and ADHD-like phenotypes in other models.


Assuntos
Dopamina/metabolismo , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/metabolismo , Nitrocompostos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Drosophila melanogaster , Feminino , Masculino , Estresse Oxidativo/fisiologia , Interação Social/efeitos dos fármacos
5.
Physiol Behav ; 222: 112892, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32302609

RESUMO

Abnormalities in the thyroid hormones, like in hypothyroidism, are closely related to dementia and Alzheimer's disease demonstrating the main symptom of these disorders: memory deficit. In this study we evaluated the effect of chrysin on deficit spatial and aversive memories and the contribution of glutamatergic, cholinergic pathways and Na+, K+-ATPase activity on hippocampus and prefrontal cortex in hypothyroid adult female mice C57BL/6. Hypothyroidism was induced by the continuous exposure to 0.1% methimazole (MTZ) in drinking water for 31 days. The exposure to MTZ was associated to low plasma levels of thyroid hormones (TH) compared to the control group on the 32nd. Subsequently, euthyroid and MTZ-induced hypothyroid mice received (intragastrically) either vehicle or chrysin (20 mg/kg) once a day for 28 consecutive days. After treatments mice performed the following behavioral assessments: open-field test (OFT), morris water maze (MWM) and passive avoidance test. Additionally, plasma TH levels were measured again, as well as glutamate levels, Na+,K+-ATPase and acetylcholinesterase (AChE) activities were analyzed in the hippocampus and prefrontal cortex of mice. Mice with hypothyroidism showed a deficit of spatial and aversive memory and chrysin treatment reversed these deficits. It also reduced the levels of glutamate and decreased Na+,K+-ATPase activity in both cerebral structures in the hypothyroid mice compared with the euthyroid ones, with the exception of glutamate in the hippocampus, which was a partial reversal. AChE activity was not altered by treatments. Together, our results demonstrate that chrysin normalized hippocampal glutamate levels and Na+,K+-ATPase activity, which could be involved in the reversal of memory deficit.


Assuntos
Ácido Glutâmico , Hipotireoidismo , Animais , Feminino , Flavonoides , Hipocampo/metabolismo , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , ATPase Trocadora de Sódio-Potássio/metabolismo
6.
Eur J Pharmacol ; 822: 78-84, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29355556

RESUMO

Hypothyroidism is often associated with psychiatric disorders such as depression. In this study, we evaluated the effect of chrysin on depressive-like behavior and monoamine levels in hypothyroid female mice. Hypothyroidism was induced by continuous exposure to 0.1% methimazole (MTZ) in drinking water for 31 days. Exposure to MTZ was associated with low plasma levels of thyroid hormones T3 and T4 compared with the control group. Subsequently, euthyroid and MTZ-induced hypothyroid mice were intragastrically administered vehicle or chrysin (20mg/kg) once a day for 28 consecutive days. After treatments, the following behavioral assessments were performed: Open-Field Test (OFT), Tail suspension test (TST), and Forced Swimming Test (FST). Additionally, T3 and T4 levels were measured again, and serotonin (5HT), dopamine, and noradrenaline levels were analyzed in the prefrontal cortex and the hippocampus. Chrysin treatment could not reverse T3 and T4 levels. Hypothyroid mice showed an increased immobility time in TST and FST; chrysin treatment reversed these effects. Reduced levels of 5HT and dopamine in the prefrontal cortex and the hippocampus were observed in the hypothyroid mice than in the euthyroid mice. Chrysin treatment recovered 5HT content in both structures and dopamine content only in the hippocampus. Noradrenaline content was not altered by treatments. Together, our results have demonstrated that chrysin treatment reverses depressive-like behaviors in hypothyroid female mice and suggests the involvement of 5HT and dopamine in these effects.


Assuntos
Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Dopamina/metabolismo , Flavonoides/farmacologia , Hipocampo/efeitos dos fármacos , Hipotireoidismo/complicações , Serotonina/metabolismo , Animais , Depressão/etiologia , Depressão/metabolismo , Feminino , Flavonoides/uso terapêutico , Hipocampo/metabolismo , Camundongos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Hormônios Tireóideos/metabolismo
7.
Behav Brain Res ; 351: 104-113, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29803654

RESUMO

The etiopathogenesis of depression may involve repeated exposure to several unpredictable stressors. This study was conducted to investigate changes induced by chronic unpredictable mild stress (CUMS) and to assess behavioral and neurochemical changes that predict depressive-like behavior in Drosophila melanogaster. Male Drosophila melanogaster flies were exposed to CUMS with several stressors (cold, heat, starvation, and sleep deprivation) in an unpredictable and chronic manner for ten days. At the end of treatment, in vivo behavioral tests (open field, aggression, forced swimming, mating, light/dark box, male fertility evaluation, sucrose preference, weight evaluation) and ex vivo analyses (dopamine and serotonin levels) were performed. Using this CUMS model, we obtained results that contribute to the construction of a depressive model in Drosophila, where we reproduce some behavioral phenotypes corresponding to depressive symptoms, such as immobility in the forced swimming test, less exploration in the light/dark test, changes in mating behavior, changes in the aggressiveness test, reduced sucrose preference, and weight-loss, in addition to a significant reduction in the levels of serotonin and dopamine when compared to the control group. Fluoxetine was used in our study as a positive control to demonstrate that CUMS-induced depressive-like behaviors in flies can be reversed by antidepressants. In conclusion, male Drosophila melanogaster exposed to CUMS display a depressive-like phenotype, and, while this poses some limitations as an animal model for depression, it meets some of the criteria required to be a valid model, such as good face and construct validity.


Assuntos
Aminas Biogênicas/metabolismo , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Estresse Psicológico/metabolismo , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/etiologia , Fluoxetina/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Estresse Psicológico/tratamento farmacológico , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA