Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Blood Press ; 32(1): 2281320, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37971487

RESUMO

BACKGROUND: Accurate blood pressure (BP) measurement is essential for the correct diagnosis and management of hypertension (HTN) especially in the elderly population. As with of all BP devices, the accuracy of cuffless devices must be verified. This study (NCT04027777) aimed to evaluate the performance of a wrist cuffless optical BP device in an elderly population cohort in different body positions with auscultation as the reference measurement. DESIGN AND METHODS: Patients aged 65-85 years with different BP categories but without diabetes were recruited. After an initial calibration based on auscultatory measurements, BP estimation from the Aktiia Bracelet (Aktiia SA, Switzerland) were compared to reference double-blinded auscultatory measurements in sitting, standing and lying positions on four separate visits distributed over one month. In the absence of a universal standard for cuffless BP device at the time of the study, modified ISO81060-2 criteria were used for performance analysis. RESULTS: Thirty-five participants were included in the analysis fulfilling the inclusion requirements of ISO 81060-2. A total of 469 paired measurements were obtained with overall 83% acceptance rate. Differences (mean ± SD)   between Aktiia Bracelet and auscultation for systolic BP were -0.26 ± 9.96 mmHg for all body positions aggregated (sitting 1.23 ± 7.88 mmHg, standing -1.81 ± 11.11 mmHg, lying -1.8 ± 9.96 mmHg). Similarly, differences for diastolic BP were -0.75 ± 7.0 mmHg (0.2 ± 5.55 mmHg, -5.35 ± 7.75 mmHg and -0.94 ± 7.47 mmHg, respectively). Standard deviation of the averaged differences per subject for systolic/diastolic BP was 3.8/2.5 mmHg in sitting and 4.4/3.7 mmHg for all body positions aggregated. CONCLUSIONS: Overall, this study demonstrates a similar performance of the Aktiia Bracelet compared to auscultation in an elderly population in body positions representative of daily activities. The use of more comfortable, non-invasive, and non-occlusive BP monitors during long periods may facilitate e-health and may contribute to better management of HTN, including diagnosis and treatment of HTN, in the elderly.


Accuracy of blood pressure measurements is essential in the diagnosis and the follow-up of patients with high blood pressure. As with any blood pressure measuring device, a validation is necessary. In this study including a elderly population, we compared values obtained by the cuffless Aktiia Bracelet (Aktiia SA, Switzerland) after an initial calibration with the reference auscultatory method during four separate study days distributed over one month. We show that the accuracy of the Aktiia Bracelet is similar to auscultation. The accuracy varies depending on the position in which the measurement is performed. Overall, the accuracy is not modified by a higher age category. The use of a cuffless device in the elderly population characterized by high prevalence of hypertension may facilitate the follow-up of blood pressure with more comfort and minimal constraints.


Assuntos
Determinação da Pressão Arterial , Hipertensão , Humanos , Idoso , Pressão Sanguínea/fisiologia , Hipertensão/diagnóstico , Auscultação , Postura
2.
Europace ; 24(7): 1186-1194, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35045172

RESUMO

AIMS: Atrial flutter (AFlut) is a common re-entrant atrial tachycardia driven by self-sustainable mechanisms that cause excitations to propagate along pathways different from sinus rhythm. Intra-cardiac electrophysiological mapping and catheter ablation are often performed without detailed prior knowledge of the mechanism perpetuating AFlut, likely prolonging the procedure time of these invasive interventions. We sought to discriminate the AFlut location [cavotricuspid isthmus-dependent (CTI), peri-mitral, and other left atrium (LA) AFlut classes] with a machine learning-based algorithm using only the non-invasive signals from the 12-lead electrocardiogram (ECG). METHODS AND RESULTS: Hybrid 12-lead ECG dataset of 1769 signals was used (1424 in silico ECGs, and 345 clinical ECGs from 115 patients-three different ECG segments over time were extracted from each patient corresponding to single AFlut cycles). Seventy-seven features were extracted. A decision tree classifier with a hold-out classification approach was trained, validated, and tested on the dataset randomly split after selecting the most informative features. The clinical test set comprised 38 patients (114 clinical ECGs). The classifier yielded 76.3% accuracy on the clinical test set with a sensitivity of 89.7%, 75.0%, and 64.1% and a positive predictive value of 71.4%, 75.0%, and 86.2% for CTI, peri-mitral, and other LA class, respectively. Considering majority vote of the three segments taken from each patient, the CTI class was correctly classified at 92%. CONCLUSION: Our results show that a machine learning classifier relying only on non-invasive signals can potentially identify the location of AFlut mechanisms. This method could aid in planning and tailoring patient-specific AFlut treatments.


Assuntos
Flutter Atrial , Ablação por Cateter , Flutter Atrial/diagnóstico , Flutter Atrial/etiologia , Flutter Atrial/cirurgia , Eletrocardiografia/métodos , Sistema de Condução Cardíaco , Humanos , Aprendizado de Máquina
3.
Chaos ; 28(8): 085710, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30180613

RESUMO

Atrial fibrillation (AF) is regarded as a complex arrhythmia, with one or more co-existing mechanisms, resulting in an intricate structure of atrial activations. Fractionated atrial electrograms (AEGs) were thought to represent arrhythmogenic tissue and hence have been suggested as targets for radiofrequency ablation. However, current methods for ablation target identification have resulted in suboptimal outcomes for persistent AF (persAF) treatment, possibly due to the complex spatiotemporal dynamics of these mechanisms. In the present work, we sought to characterize the dynamics of atrial tissue activations from AEGs collected during persAF using recurrence plots (RPs) and recurrence quantification analysis (RQA). 797 bipolar AEGs were collected from 18 persAF patients undergoing pulmonary vein isolation (PVI). Automated AEG classification (normal vs. fractionated) was performed using the CARTO criteria (Biosense Webster). For each AEG, RPs were evaluated in a phase space estimated following Takens' theorem. Seven RQA variables were obtained from the RPs: recurrence rate; determinism; average diagonal line length; Shannon entropy of diagonal length distribution; laminarity; trapping time; and Shannon entropy of vertical length distribution. The results show that the RQA variables were significantly affected by PVI, and that the variables were effective in discriminating normal vs. fractionated AEGs. Additionally, diagonal structures associated with deterministic behavior were still present in the RPs from fractionated AEGs, leading to a high residual determinism, which could be related to unstable periodic orbits and suggesting a possible chaotic behavior. Therefore, these results contribute to a nonlinear perspective of the spatiotemporal dynamics of persAF.


Assuntos
Fibrilação Atrial/fisiopatologia , Eletrocardiografia , Processamento Eletrônico de Dados , Modelos Cardiovasculares , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Nanotechnology ; 28(49): 495711, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-28985189

RESUMO

Graphene is a breakthrough 2D material due to its unique mechanical, electrical, and thermal properties, with considerable responsiveness in real applications. However, the coverage of large areas with pristine graphene is a challenge and graphene derivatives have been alternatively exploited to produce hybrid and composite materials that allow for new developments, considering also the handling of large areas using distinct methodologies. For electronic applications there is significant interest in the investigation of the electrical properties of graphene derivatives and related composites to determine whether the characteristic 2D charge transport of pristine graphene is preserved. Here, we report a systematic study of the charge transport mechanisms of reduced graphene oxide chemically functionalized with sodium polystyrene sulfonate (PSS), named as GPSS. GPSS was produced either as quantum dots (QDs) or nanoplatelets (NPLs), being further nanostructured with poly(diallyldimethylammonium chloride) through the layer-by-layer (LbL) assembly to produce graphene nanocomposites with molecular level control. Current-voltage (I-V) measurements indicated a meticulous growth of the LbL nanostructures onto gold interdigitated electrodes (IDEs), with a space-charge-limited current dominated by a Mott-variable range hopping mechanism. A 2D intra-planar conduction within the GPSS nanostructure was observed, which resulted in effective charge carrier mobility (µ) of 4.7 cm2 V-1 s-1 for the QDs and 34.7 cm2 V-1 s-1 for the NPLs. The LbL assemblies together with the dimension of the materials (QDs or NPLs) were favorably used for the fine tuning and control of the charge carrier mobility inside the LbL nanostructures. Such 2D charge conduction mechanism and high µ values inside an interlocked multilayered assembly containing graphene-based nanocomposites are of great interest for organic devices and functionalization of interfaces.

6.
Blood Press Monit ; 28(2): 109-112, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795403

RESUMO

OBJECTIVE: Assess the accuracy and precision of the Aktiia initialization oscillometric upper-arm cuff device (Aktiia SA, Neuchâtel, Switzerland) for home blood pressure (BP) monitoring in the general population according to the American National Standards Institute / Association for the Advancement of Medical Instrumentation/International Organization for Standardization (ANSI/AAMI/ISO) 81060-2:2013 standard. METHODS: Three trained observers validated BP measurements performed using the Aktiia cuff versus BP measurements performed using a standard mercury sphygmomanometer. Two ISO 81060-2 criteria were used to validate the Aktiia cuff. Criterion 1 evaluated, for both SBP and DBP, whether the mean error between BP readings performed by the Aktiia cuff and auscultation was ≤±5 mmHg, and whether the SD of the error was ≤8 mmHg. Criterion 2 assessed whether, for the SBP and DBP of each individual subject, the SD of the averaged paired determinations per subject of the Aktiia cuff and of the auscultation met the criteria listed in the table of Averaged Subject Data Acceptance. RESULTS: Mean differences between the Aktiia cuff and the standard mercury sphygmomanometer (criterion 1) were 1.3 ± 7.11 mmHg for SBP and -0.2 ± 5.46 mmHg for DBP. The SD of the averaged paired differences per subject (criterion 2) was 6.55 mmHg for SBP and 5.15 mmHg for DBP. CONCLUSION: Aktiia initialization cuff complies with the requirements of the ANSI/AAMI/ISO guidelines and can be safely recommended for BP measurements in the adult population.


Assuntos
Monitores de Pressão Arterial , Mercúrio , Adulto , Humanos , Pressão Sanguínea , Determinação da Pressão Arterial , Esfigmomanômetros
7.
Hypertens Res ; 46(6): 1456-1461, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37012424

RESUMO

In this preliminary study, we compared daytime blood pressure (BP) measurements performed by a commercially available cuffless-and continual-BP monitor (Aktiia monitor, Neuchâtel, Switzerland) and a traditional ambulatory BP monitor (ABPM; Dyasis 3, Novacor, Paris, France) from 52 patients enrolled in a 12-week cardiac rehabilitation (CR) program (Neuchâtel, Switzerland). Daytime (9am-9pm) systolic (SBP) and diastolic (DBP) BP from 7-day averaged data from Aktiia monitor were compared to 1-day averaged BP data from ABPM. No significant differences were found between the Aktiia monitor and the ABPM for SBP (µ ± σ [95% confidence interval]: 1.6 ± 10.5 [-1.5, 4.6] mmHg, P = 0.306; correlation [R2]: 0.70; ± 10/ ± 15 mmHg agreements: 60%, 84%). Marginally non-significant bias was found for DBP (-2.2 ± 8.0 [-4.5, 0.1] mmHg, P = 0.058; R2: 0.66; ±10/±15 mmHg agreements: 78%, 96%). These intermediate results show that daytime BP measurements using the Aktiia monitor generate data comparable to that of an ABPM monitor.


Assuntos
Monitorização Ambulatorial da Pressão Arterial , Pressão Sanguínea , Humanos , Pressão Sanguínea/fisiologia , Monitorização Ambulatorial da Pressão Arterial/métodos , Monitores de Pressão Arterial , Estudos Prospectivos
8.
Front Physiol ; 13: 946718, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991173

RESUMO

Purpose: Several studies have emphasised the significance of high dominant frequency (HDF) and rotors in the perpetuation of AF. However, the co-localisation relationship between both attributes is not completely understood yet. In this study, we aim to evaluate the spatial distributions of HDF regions and rotor sites within the left atrium (LA) pre and post HDF-guided ablation in PersAF. Methods: This study involved 10 PersAF patients undergoing catheter ablation targeting HDF regions in the LA. 2048-channels of atrial electrograms (AEG) were collected pre- and post-ablation using a non-contact array (EnSite, Abbott). The dominant frequency (DF, 4-10 Hz) areas with DF within 0.25 Hz of the maximum out of the 2048 points were defined as "high" DF (HDF). Rotors were defined as PSs that last more than 100 ms and at a similar location through subsequent phase frames over time. Results: The results indicated an extremely poor spatial correlation between the HDF regions and sites of the rotors in pre-versus post-ablation cases for the non-terminated (pre: CORR; 0.05 ± 0.17. vs. post: CORR; -0.030 ± 0.19, and with terminated patients (pre: CORR; -0.016 ± 0.03. post: CORR; -0.022 ± 0.04). Rotors associated with AF terminations had a long-lasting life-span post-ablation (non-terminated vs. terminated 120.7 ± 6.5 ms vs. 139.9 ± 39.8 ms), high core velocity (1.35 ± 1.3 mm/ms vs. 1.32 ± 0.9 mm/ms), and were less meandering (3.4 ± 3.04 mm vs. 1.5 ± 1.2 mm). Although the results suggest a poor spatial overlapping between rotors' sites and sites of AFCL changes in terminated and non-terminated patients, a higher correlation was determined in terminated patients (spatial overlapping percentage pre: 25 ± 4.2% vs. 17 ± 3.8% vs. post: 8 ± 4.2% vs. 3.7 ± 1.7% p < 0.05, respectively). Conclusion: Using non-contact AEG, it was noted that the correlation is poor between the spatial distribution of HDF regions and sites of rotors. Rotors were longer-lasting, faster and more stationary in patients with AF termination post-ablation. Rotors sites demonstrated poor spatial overlapping with sites of AFCL changes that lead to AF termination.

9.
Front Physiol ; 13: 826449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370796

RESUMO

Purpose: Sites of highest dominant frequency (HDF) are implicated by many proposed mechanisms underlying persistent atrial fibrillation (persAF). We hypothesized that prospectively identifying and ablating dynamic left atrial HDF sites would favorably impact the electrophysiological substrate of persAF. We aim to assess the feasibility of prospectively identifying HDF sites by global simultaneous left atrial mapping. Methods: PersAF patients with no prior ablation history underwent global simultaneous left atrial non-contact mapping. 30 s of electrograms recorded during AF were exported into a bespoke MATLAB interface to identify HDF regions, which were then targeted for ablation, prior to pulmonary vein isolation. Following ablation of each region, change in AF cycle length (AFCL) was documented (≥ 10 ms considered significant). Baseline isopotential maps of ablated regions were retrospectively analyzed looking for rotors and focal activation or extinction events. Results: A total of 51 HDF regions were identified and ablated in 10 patients (median DF 5.8Hz, range 4.4-7.1Hz). An increase in AFCL of was seen in 20 of the 51 regions (39%), including AF termination in 4 patients. 5 out of 10 patients (including the 4 patients where AF termination occurred with HDF-guided ablation) were free from AF recurrence at 1 year. The proportion of HDF occurrences in an ablated region was not associated with change in AFCL (τ = 0.11, p = 0.24). Regions where AFCL decreased by 10 ms or more (i.e., AF disorganization) after ablation also showed lowest baseline spectral organization (p < 0.033 for any comparison). Considering all ablated regions, the average proportion of HDF events which were also HRI events was 8.0 ± 13%. Focal activations predominated (537/1253 events) in the ablated regions on isopotential maps, were modestly associated with the proportion of HDF occurrences represented by the ablated region (Kendall's τ = 0.40, p < 0.0001), and very strongly associated with focal extinction events (τ = 0.79, p < 0.0001). Rotors were rare (4/1253 events). Conclusion: Targeting dynamic HDF sites is feasible and can be efficacious, but lacks specificity in identifying relevant human persAF substrate. Spectral organization may have an adjunctive role in preventing unnecessary substrate ablation. Dynamic HDF sites are not associated with observable rotational activity on isopotential mapping, but epi-endocardial breakthroughs could be contributory.

10.
IEEE Trans Biomed Eng ; 68(3): 914-925, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746003

RESUMO

OBJECTIVE: Atrial flutter (AFl) is a common arrhythmia that can be categorized according to different self-sustained electrophysiological mechanisms. The non-invasive discrimination of such mechanisms would greatly benefit ablative methods for AFl therapy as the driving mechanisms would be described prior to the invasive procedure, helping to guide ablation. In the present work, we sought to implement recurrence quantification analysis (RQA) on 12-lead ECG signals from a computational framework to discriminate different electrophysiological mechanisms sustaining AFl. METHODS: 20 different AFl mechanisms were generated in 8 atrial models and were propagated into 8 torso models via forward solution, resulting in 1,256 sets of 12-lead ECG signals. Principal component analysis was applied on the 12-lead ECGs, and six RQA-based features were extracted from the most significant principal component scores in two different approaches: individual component RQA and spatial reduced RQA. RESULTS: In both approaches, RQA-based features were significantly sensitive to the dynamic structures underlying different AFl mechanisms. Hit rate as high as 67.7% was achieved when discriminating the 20 AFl mechanisms. RQA-based features estimated for a clinical sample suggested high agreement with the results found in the computational framework. CONCLUSION: RQA has been shown an effective method to distinguish different AFl electrophysiological mechanisms in a non-invasive computational framework. A clinical 12-lead ECG used as proof of concept showed the value of both the simulations and the methods. SIGNIFICANCE: The non-invasive discrimination of AFl mechanisms helps to delineate the ablation strategy, reducing time and resources required to conduct invasive cardiac mapping and ablation procedures.


Assuntos
Fibrilação Atrial , Flutter Atrial , Ablação por Cateter , Flutter Atrial/diagnóstico , Eletrocardiografia , Átrios do Coração , Humanos , Recidiva
11.
Front Physiol ; 12: 649486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776801

RESUMO

Purpose: Identifying targets for catheter ablation remains challenging in persistent atrial fibrillation (persAF). The dominant frequency (DF) of atrial electrograms during atrial fibrillation (AF) is believed to primarily reflect local activation. Highest DF (HDF) might be responsible for the initiation and perpetuation of persAF. However, the spatiotemporal behavior of DF remains not fully understood. Some DFs during persAF were shown to lack spatiotemporal stability, while others exhibit recurrent behavior. We sought to develop a tool to automatically detect recurrent DF patterns in persAF patients. Methods: Non-contact mapping of the left atrium (LA) was performed in 10 patients undergoing persAF HDF ablation. 2,048 virtual electrograms (vEGMs, EnSite Array, Abbott Laboratories, USA) were collected for up to 5 min before and after ablation. Frequency spectrum was estimated using fast Fourier transform and DF was identified as the peak between 4 and 10 Hz and organization index (OI) was calculated. The HDF maps were identified per 4-s window and an automated pattern recognition algorithm was used to find recurring HDF spatial patterns. Dominant patterns (DPs) were defined as the HDF pattern with the highest recurrence. Results: DPs were found in all patients. Patients in atrial flutter after ablation had a single DP over the recorded time period. The time interval (median [IQR]) of DP recurrence for the patients in AF after ablation (7 patients) decreased from 21.1 s [11.8 49.7 s] to 15.7 s [6.5 18.2 s]. The DF inside the DPs presented lower temporal standard deviation (0.18 ± 0.06 Hz vs. 0.29 ± 0.12 Hz, p < 0.05) and higher OI (0.35 ± 0.03 vs. 0.31 ± 0.04, p < 0.05). The atrial regions with the highest proportion of HDF region were the septum and the left upper pulmonary vein. Conclusion: Multiple recurrent spatiotemporal HDF patterns exist during persAF. The proposed method can identify and quantify the spatiotemporal repetition of the HDFs, where the high recurrences of DP may suggest a more organized rhythm. DPs presented a more consistent DF and higher organization compared with non-DPs, suggesting that DF with higher OI might be more likely to recur. Recurring patterns offer a more comprehensive dynamic insight of persAF behavior, and ablation targeting such regions may be beneficial.

12.
IEEE Trans Biomed Eng ; 68(4): 1131-1141, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32881680

RESUMO

OBJECTIVE: Ablation treatment for persistent atrial fibrillation (persAF) remains challenging due to the absence of a 'ground truth' for atrial substrate characterization and the presence of multiple mechanisms driving the arrhythmia. We implemented an unsupervised classification to identify clusters of atrial electrograms (AEGs) with similar patterns, which were then validated by AEG-derived markers. METHODS: 956 bipolar AEGs were collected from 11 persAF patients. CARTO variables (Biosense Webster; ICL, ACI and SCI) were used to create a 3D space, and subsequently used to perform an unsupervised classification with k-means. The characteristics of the identified groups were investigated using nine AEG-derived markers: sample entropy (SampEn), dominant frequency, organization index (OI), determinism, laminarity, recurrence rate (RR), peak-to-peak (PP) amplitude, cycle length (CL), and wave similarity (WS). RESULTS: Five AEG classes with distinct characteristics were identified (F = 582, P<0.0001). The presence of fractionation increased from class 1 to 5, as reflected by the nine markers. Class 1 (25%) included organized AEGs with high WS, determinism, laminarity, and RR, and low SampEn. Class 5 (20%) comprised fractionated AEGs with in low WS, OI, determinism, laminarity, and RR, and in high SampEn. Classes 2 (12%), 3 (13%) and 4 (30%) suggested different degrees of AEG organization. CONCLUSIONS: Our results expand and reinterpret the criteria used for automated AEG classification. The nine markers highlighted electrophysiological differences among the five classes found by the k-means, which could provide a more complete characterization of persAF substrate during ablation target identification in future clinical studies.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Fibrilação Atrial/diagnóstico , Eletrofisiologia Cardíaca , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração , Humanos , Recidiva
13.
Cardiovasc Digit Health J ; 2(2): 126-136, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33899043

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most common supraventricular arrhythmia, characterized by disorganized atrial electrical activity, maintained by localized arrhythmogenic atrial drivers. Pulmonary vein isolation (PVI) allows to exclude PV-related drivers. However, PVI is less effective in patients with additional extra-PV arrhythmogenic drivers. OBJECTIVES: To discriminate whether AF drivers are located near the PVs vs extra-PV regions using the noninvasive 12-lead electrocardiogram (ECG) in a computational and clinical framework, and to computationally predict the acute success of PVI in these cohorts of data. METHODS: AF drivers were induced in 2 computerized atrial models and combined with 8 torso models, resulting in 1128 12-lead ECGs (80 ECGs with AF drivers located in the PVs and 1048 in extra-PV areas). A total of 103 features were extracted from the signals. Binary decision tree classifier was trained on the simulated data and evaluated using hold-out cross-validation. The PVs were subsequently isolated in the models to assess PVI success. Finally, the classifier was tested on a clinical dataset (46 patients: 23 PV-dependent AF and 23 with additional extra-PV sources). RESULTS: The classifier yielded 82.6% specificity and 73.9% sensitivity for detecting PV drivers on the clinical data. Consistency analysis on the 46 patients resulted in 93.5% results match. Applying PVI on the simulated AF cases terminated AF in 100% of the cases in the PV class. CONCLUSION: Machine learning-based classification of 12-lead-ECG allows discrimination between patients with PV drivers vs those with extra-PV drivers of AF. The novel algorithm may aid to identify patients with high acute success rates to PVI.

14.
Front Physiol ; 11: 869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32792983

RESUMO

PURPOSE: Recent investigations failed to reproduce the positive rotor-guided ablation outcomes shown by initial studies for treating persistent atrial fibrillation (persAF). Phase singularity (PS) is an important feature for AF driver detection, but algorithms for automated PS identification differ. We aim to investigate the performance of four different techniques for automated PS detection. METHODS: 2048-channel virtual electrogram (VEGM) and electrocardiogram signals were collected for 30 s from 10 patients undergoing persAF ablation. QRST-subtraction was performed and VEGMs were processed using sinusoidal wavelet reconstruction. The phase was obtained using Hilbert transform. PSs were detected using four algorithms: (1) 2D image processing based and neighbor-indexing algorithm; (2) 3D neighbor-indexing algorithm; (3) 2D kernel convolutional algorithm estimating topological charge; (4) topological charge estimation on 3D mesh. PS annotations were compared using the structural similarity index (SSIM) and Pearson's correlation coefficient (CORR). Optimized parameters to improve detection accuracy were found for all four algorithms using F ß score and 10-fold cross-validation compared with manual annotation. Local clustering with density-based spatial clustering of applications with noise (DBSCAN) was proposed to improve algorithms 3 and 4. RESULTS: The PS density maps created by each algorithm with default parameters were poorly correlated. Phase gradient threshold and search radius (or kernels) were shown to affect PS detections. The processing times for the algorithms were significantly different (p < 0.0001). The F ß scores for algorithms 1, 2, 3, 3 + DBSCAN, 4 and 4 + DBSCAN were 0.547, 0.645, 0.742, 0.828, 0.656, and 0.831. Algorithm 4 + DBSCAN achieved the best classification performance with acceptable processing time (2.0 ± 0.3 s). CONCLUSION: AF driver identification is dependent on the PS detection algorithms and their parameters, which could explain some of the inconsistencies in rotor-guided ablation outcomes in different studies. For 3D triangulated meshes, algorithm 4 + DBSCAN with optimal parameters was the best solution for real-time, automated PS detection due to accuracy and speed. Similarly, algorithm 3 + DBSCAN with optimal parameters is preferred for uniform 2D meshes. Such algorithms - and parameters - should be preferred in future clinical studies for identifying AF drivers and minimizing methodological heterogeneities. This would facilitate comparisons in rotor-guided ablation outcomes in future works.

15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2277-2280, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946354

RESUMO

The outcomes of ablation targeting either reentry activations or fractionated activity during persistent atrial fibrillation (AF) therapy remain suboptimal due to, among others, the intricate underlying AF dynamics. In the present work, we sought to investigate such AF dynamics in a heterogeneous simulation setup using recurrence quantification analysis (RQA). AF was simulated in a spherical model of the left atrium, from which 412 unipolar atrial electrograms (AEGs) were extracted (2 s duration; 5 mm spacing). The phase was calculated using the Hilbert transform, followed by the identification of points of singularity (PS). Three regions were defined according to the occurrence of PSs: 1) no rotors; 2) transient rotors and; 3) long-standing rotors. Bipolar AEGs (1114) were calculated from pairs of unipolar nodes and bandpass filtered (30-300 Hz). The CARTO criterion (Biosense Webster) was used for AEGs classification (normal vs. fractionated). RQA attributes were calculated from the filtered bipolar AEGs: determinism (DET); recurrence rate (RR); laminarity (LAM). Sample entropy (SampEn) and dominant frequency (DF) were also calculated from the AEGs. Regions with longstanding rotors have shown significantly lower RQA attributes and SampEn when compared to the other regions, suggesting a higher irregular behaviour (P≤0.01 for all cases). Normal and fractionated AEGs were found in all regions (respectively; Region 1: 387 vs. 15; Region 2: 221 vs. 13; Region 3: 415 vs. 63). Region 1 vs. Region 3 have shown significant differences in normal AEGs (P≤0.0001 for all RQA attributes and SampEn), and significant differences in fractionated AEGs for LAM, RR and SampEn (P=0.0071, P=0.0221 and P=0.0086, respectively). Our results suggest the co-existence of normal and fractionated AEGs within long-standing rotors. RQA has unveiled distinct dynamic patterns-irrespective of AEGs classification-related to regularity structures and their nonstationary behaviour in a rigorous deterministic context.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Algoritmos , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração , Humanos , Recidiva
16.
Comput Biol Med ; 104: 299-309, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30503301

RESUMO

Non-invasive analysis of atrial fibrillation (AF) using body surface mapping (BSM) has gained significant interest, with attempts at interpreting atrial spectro-temporal parameters from body surface signals. As these body surface signals could be affected by properties of the torso volume conductor, this interpretation is not always straightforward. This paper highlights the volume conductor effects and influences of the algorithm parameters for identifying the dominant frequency (DF) from cardiac signals collected simultaneously on the torso and atrial surface. Bi-atrial virtual electrograms (VEGMs) and BSMs were recorded simultaneously for 5 min from 10 patients undergoing ablation for persistent AF. Frequency analysis was performed on 4 s segments. DF was defined as the frequency with highest power between 4 and 10 Hz with and without applying organization index (OI) thresholds. The volume conductor effect was assessed by analyzing the highest DF (HDF) difference of each VEGM HDF against its BSM counterpart. Significant differences in HDF values between intra-cardiac and torso signals could be observed, independent of OI threshold. This difference increases with increasing endocardial HDF (BSM-VEGM median difference from -0.13 Hz for VEGM HDF at 6.25 ±â€¯0.25 Hz to -4.24 Hz at 9.75 ±â€¯0.25 Hz), thereby confirming the theory of the volume conductor effect in real-life situations. Applying an OI threshold strongly affected the BSM HDF area size and location and atrial HDF area location. These results suggest that volume conductor and measurement algorithm effects must be considered for appropriate clinical interpretation.


Assuntos
Algoritmos , Fibrilação Atrial/fisiopatologia , Mapeamento Potencial de Superfície Corporal , Técnicas Eletrofisiológicas Cardíacas , Sistema de Condução Cardíaco/fisiopatologia , Adulto , Idoso , Átrios do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade
19.
Med Biol Eng Comput ; 56(1): 71-83, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28674778

RESUMO

The unstable temporal behavior of atrial electrical activity during persistent atrial fibrillation (persAF) might influence ablation target identification, which could explain the conflicting persAF ablation outcomes in previous studies. We sought to investigate the temporal behavior and consistency of atrial electrogram (AEG) fractionation using different segment lengths. Seven hundred ninety-seven bipolar AEGs were collected with three segment lengths (2.5, 5,and 8 s) from 18 patients undergoing persAF ablation. The AEGs with 8-s duration were divided into three 2.5-s consecutive segments. AEG fractionation classification was applied off-line to all cases following the CARTO criteria; 43% of the AEGs remained fractionated for the three consecutive AEG segments, while nearly 30% were temporally unstable. AEG classification within the consecutive segments had moderate correlation (segment 1 vs 2: Spearman's correlation ρ = 0.74, kappa score κ = 0.62; segment 1 vs 3: ρ = 0.726, κ = 0.62; segment 2 vs 3: ρ = 0.75, κ = 0.68). AEG classifications were more similar between AEGs with 5 and 8 s (ρ = 0.96, κ = 0.87) than 2.5 versus 5 s (ρ = 0.93, κ = 0.84) and 2.5 versus 8 s (ρ = 0.90, κ = 0.78). Our results show that the CARTO criteria should be revisited and consider recording duration longer than 2.5 s for consistent ablation target identification in persAF.


Assuntos
Fibrilação Atrial/fisiopatologia , Eletrocardiografia , Átrios do Coração/fisiopatologia , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estatísticas não Paramétricas , Fatores de Tempo
20.
Comput Methods Programs Biomed ; 141: 83-92, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28241971

RESUMO

BACKGROUND AND OBJECTIVE: Optimal targets for persistent atrial fibrillation (persAF) ablation are still debated. Atrial regions hosting high dominant frequency (HDF) are believed to participate in the initiation and maintenance of persAF and hence are potential targets for ablation, while rotor ablation has shown promising initial results. Currently, no commercially available system offers the capability to automatically identify both these phenomena. This paper describes an integrated 3D software platform combining the mapping of both frequency spectrum and phase from atrial electrograms (AEGs) to help guide persAF ablation in clinical cardiac electrophysiological studies. METHODS: 30s of 2048 non-contact AEGs (EnSite Array, St. Jude Medical) were collected and analyzed per patient. After QRST removal, the AEGs were divided into 4s windows with a 50% overlap. Fast Fourier transform was used for DF identification. HDF areas were identified as the maximum DF to 0.25Hz below that, and their centers of gravity (CGs) were used to track their spatiotemporal movement. Spectral organization measurements were estimated. Hilbert transform was used to calculate instantaneous phase. RESULTS: The system was successfully used to guide catheter ablation for 10 persAF patients. The mean processing time was 10.4 ± 1.5min, which is adequate comparing to the normal electrophysiological (EP) procedure time (120∼180min). CONCLUSIONS: A customized software platform capable of measuring different forms of spatiotemporal AEG analysis was implemented and used in clinical environment to guide persAF ablation. The modular nature of the platform will help electrophysiological studies in understanding of the underlying AF mechanisms.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Fibrilação Atrial/fisiopatologia , Coração/fisiologia , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA