Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 36(11): 2191-2202, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27634836

RESUMO

OBJECTIVE: B-cell depletion therapy is widely used for treatment of cancers and autoimmune diseases. B cells are abundant in abdominal aortic aneurysms (AAA); however, it is unknown whether B-cell depletion therapy affects AAA growth. Using experimental models of murine AAA, we aim to examine the effect of B-cell depletion on AAA formation. APPROACH AND RESULTS: Wild-type or apolipoprotein E-knockout mice were treated with mouse monoclonal anti-CD20 or control antibodies and subjected to an elastase perfusion or angiotensin II infusion model to induce AAA, respectively. Anti-CD20 antibody treatment significantly depleted B1 and B2 cells, and strikingly suppressed AAA growth in both models. B-cell depletion resulted in lower circulating IgM levels, but did not affect the levels of IgG or cytokine/chemokine levels. Although the total number of leukocyte remained unchanged in elastase-perfused aortas after anti-CD20 antibody treatment, the number of B-cell subtypes was significantly lower. Interestingly, plasmacytoid dendritic cells expressing the immunomodulatory enzyme indole 2,3-dioxygenase were detected in the aortas of B-cell-depleted mice. In accordance with an increase in indole 2,3-dioxygenase+ plasmacytoid dendritic cells, the number of regulatory T cells was higher, whereas the expression of proinflammatory genes was lower in aortas of B-cell-depleted mice. In a coculture model, the presence of B cells significantly lowered the number of indole 2,3-dioxygenase+ plasmacytoid dendritic cells without affecting total plasmacytoid dendritic cell number. CONCLUSIONS: The present results demonstrate that B-cell depletion protects mice from experimental AAA formation and promotes emergence of an immunosuppressive environment in aorta.


Assuntos
Anticorpos/farmacologia , Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Linfócitos B/efeitos dos fármacos , Depleção Linfocítica/métodos , Angiotensina II , Animais , Antígenos CD20/imunologia , Antígenos CD20/metabolismo , Aorta Abdominal/imunologia , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/imunologia , Aneurisma da Aorta Abdominal/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores/sangue , Células Cultivadas , Microambiente Celular , Técnicas de Cocultura , Citocinas/sangue , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Predisposição Genética para Doença , Imunoglobulina M/sangue , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Mediadores da Inflamação/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Elastase Pancreática , Fenótipo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
2.
Biol Trace Elem Res ; 198(2): 521-534, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32124228

RESUMO

Physical exercise is a well-recognized effective non-pharmacological therapy for cardiovascular diseases. However, because iron is essential element in many physiological processes including hemoglobin and myoglobin synthesis, thereby playing a role on oxygen transport, many athletes use iron supplement to improve physical performance. Regarding this, iron overload is associated with oxidative stress and damage to various systems, including cardiovascular. Thus, we aimed to identify the vascular effects of aerobic exercise in a rat model of iron overload. Male Wistar rats were treated with 100 mg/kg/day iron-dextran, i.p., 5 days a week for 4 weeks, and then underwent aerobic exercise protocol on a treadmill at moderate intensity, 60 min/day, 5 days a week for 8 weeks. Exercise reduced vasoconstrictor response of isolated aortic rings by increasing participation of nitric oxide (NO) and reducing oxidative stress, but these benefits to the vasculature were not observed in rats previously subjected to iron overload. The reduced vasoconstriction in the exercised group was reversed by incubation with superoxide dismutase (SOD) inhibitor, suggesting that increased SOD activity by exercise was lost in iron overload rats. Iron overload groups increased serum levels of iron, transferrin saturation, and iron deposition in the liver, gastrocnemius muscle, and aorta, and the catalase was overexpressed in the aorta probably as a compensatory mechanism to the increased oxidative stress. In conclusion, despite the known beneficial effects of aerobic exercise on vasculature, our results indicate that previous iron overload impeded the anticontractile effect mediated by increased NO bioavailability and endogenous antioxidant response due to exercise protocol.


Assuntos
Sobrecarga de Ferro , Condicionamento Físico Animal , Animais , Complexo Ferro-Dextran , Masculino , Óxido Nítrico , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxido Dismutase
3.
Biol Trace Elem Res ; 183(2): 325-334, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28905315

RESUMO

Cadmium is an environmental pollutant closely linked with cardiovascular diseases that seems to involve endothelium dysfunction and reduced nitric oxide (NO) bioavailability. Knowing that NO causes dilatation through the activation of potassium channels and Na+/K+-ATPase, we aimed to determine whether acute cadmium administration (10 µM) alters the participation of K+ channels, voltage-activated calcium channel, and Na+/K+-ATPase activity in vascular function of isolated aortic rings of rats. Cadmium did not modify the acetylcholine-induced relaxation. After L-NAME addition, the relaxation induced by acetylcholine was abolished in presence or absence of cadmium, suggesting that acutely, this metal did not change NO release. However, tetraethylammonium (a nonselective K+ channels blocker) reduced acetylcholine-induced relaxation but this effect was lower in the preparations with cadmium, suggesting a decrease of K+ channels function in acetylcholine response after cadmium incubation. Apamin (a selective blocker of small Ca2+-activated K+ channels-SKCa), iberiotoxin (a selective blocker of large-conductance Ca2+-activated K+ channels-BKCa), and verapamil (a blocker of calcium channel) reduced the endothelium-dependent relaxation only in the absence of cadmium. Finally, cadmium decreases Na+/K+-ATPase activity. Our results provide evidence that the cadmium acute incubation unaffected the calcium-activated potassium channels (SKCa and BKCa) and voltage-calcium channels on the acetylcholine vasodilatation. In addition, acute cadmium incubation seems to reduce the Na+/K+-ATPase activity.


Assuntos
Cádmio/farmacologia , Metais Pesados/farmacologia , Canais de Potássio Cálcio-Ativados/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Apamina/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Potássio/metabolismo , Ratos , Verapamil/farmacologia
4.
Toxicol In Vitro ; 29(8): 2030-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26320835

RESUMO

Fructose acutely interferes with cardiovascular function in humans and in animals, but the mechanisms remain unclear. Thus, we tested whether fructose can affect endothelial function without the interference of its metabolic effect by exposing the rat aorta to a high fructose concentration and then evaluate the vascular responses to vasoactive agents. We observed that fructose exposure causes overactivation of NADPH oxidase, which enhances superoxide anion production and increases NO degradation. Additionally, the enhanced vasoconstrictor action of hydrogen peroxide might exacerbate contractile responses. This vasoactive imbalance might be the key role by which fructose induces vascular dysfunction.


Assuntos
Aorta/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Frutose/toxicidade , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Acetofenonas/metabolismo , Animais , Catalase/metabolismo , Endotélio Vascular/efeitos dos fármacos , Masculino , Manitol/farmacologia , NADPH Oxidases/genética , Ratos , Ratos Wistar , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Técnicas de Cultura de Tecidos
5.
Biol Trace Elem Res ; 167(2): 280-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25795172

RESUMO

Lead exposure has been considered to be a risk factor for hypertension and cardiovascular disease. Our purpose was to evaluate the effects of low plasma lead concentration on cardiac contractility in isolated papillary muscles. Wistar rats were divided in control group or group treated with 100 ppm of lead acetate in the drinking water for 15 days. Blood pressure (BP) was measured weekly. At the end of the treatment period, the animals were anesthetized and euthanized, and parameters related to isolated papillary muscle contractility were recorded. The lead concentrations in the blood reached 12.3 ± 2 µg/dL. The BP was increased in the group treated with 100 ppm of lead acetate. Lead treatment did not alter force and time derivatives of the force of left ventricular papillary muscles. In addition, the inotropic response induced by an increase in the extracellular Ca(2+) concentration was reduced in the Pb(2+) group. However, the uptake of Ca(2+) by the sarcoplasmic reticulum and the protein expression of SERCA and phospholamban remained unchanged. Postrest contraction was similar in the both groups, and tetanic peak and plateau tension were reduced in lead group. These results demonstrated that the reduction in the inotropic response to calcium does not appear to be caused by changes in the trans-sarcolemmal calcium flux but suggest that an impairment of the contractile machinery might be taking place. Our results demonstrate that even at a concentration below the limit considered to be safe, lead exerts deleterious effects on the cardiac contractile machinery.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Intoxicação por Chumbo , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Compostos Organometálicos/toxicidade , Animais , Proteínas de Ligação ao Cálcio/biossíntese , Intoxicação por Chumbo/metabolismo , Intoxicação por Chumbo/fisiopatologia , Masculino , Ratos , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese
6.
PLoS One ; 8(7): e68418, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874620

RESUMO

Cadmium is a highly toxic metal that is present in phosphate fertilizers, and the incidence of cadmium poisoning in the general population has increased, mainly due to cigarette smoking. Once absorbed, cadmium accumulates in the tissues, causing harmful effects including high blood pressure, endothelial damage and oxidative stress. Oxidative stress is known to efficiently produce oxidized low-density lipoprotein and consequently atherosclerosis, mainly in the aorta. However, the mechanisms through which endothelial damage is induced by cadmium have not been elucidated. Thus, the aim of this study was to investigate the effects of this metal in the isolated aorta and the possible role of oxidative stress. Rats received 100 mg.L(-1) cadmium chloride (CdCl2) in the drinking water or distilled water alone for four weeks. The pressor effect of cadmium was followed throughout the exposure period by tail plethysmography. At the end of the fourth week, the blood cadmium content was established, and the vascular reactivity of the isolated aorta to phenylephrine, acetylcholine and sodium nitroprusside was analyzed in the context of endothelium denudation and incubation with L-NAME, apocynin, losartan, enalapril, superoxide dismutase (SOD) or catalase. We observed an increased response to phenylephrine in cadmium-treated rats. This increase was abolished by catalase and SOD incubation. Apocynin treatment reduced the phenylephrine response in both treatment groups, but its effect was greater in cadmium-treated rats, and NOX2 expression was greater in the cadmium group. These results suggested that cadmium in blood concentrations similar to those found in occupationally exposed populations is able to stimulate NOX2 expression, contributing to oxidative stress and reducing NO bioavailability, despite enhanced eNOS expression. These findings suggest that cadmium exposure promotes endothelial damage that might contribute to inflammation, vascular injury and the development of atherosclerosis.


Assuntos
Aorta/patologia , Cádmio/toxicidade , Endotélio Vascular/patologia , Estresse Oxidativo/efeitos dos fármacos , Acetofenonas/farmacologia , Acetilcolina/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Aorta/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Cádmio/sangue , Catalase/metabolismo , Densitometria , Enalapril/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Técnicas In Vitro , Losartan/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Nitroprussiato/farmacologia , Fenilefrina/farmacologia , Ratos , Superóxido Dismutase/metabolismo , Sístole/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA