Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405693

RESUMO

Breast cancer (BC) is the most common cancer affecting women in the United States. Ductal carcinoma in situ (DCIS) is the earliest identifiable pre-invasive BC lesion. Estimates show that 14 to 50% of DCIS cases progress to invasive BC. Our objective was to identify nuclear matrix proteins (NMP) with specifically altered expression in DCIS and later stages of BC compared to non-diseased breast reduction mammoplasty and a contralateral breast explant using mass spectrometry and RNA sequencing to accurately identify aggressive DCIS. Sixty NMPs were significantly differentially expressed between the DCIS and non-diseased breast epithelium in an isogenic contralateral pair of patient-derived extended explants. Ten of the sixty showed significant mRNA expression level differences that matched the protein expression. These 10 proteins were similarly expressed in non-diseased breast reduction cells. Three NMPs (RPL7A, RPL11, RPL31) were significantly upregulated in DCIS and all other BC stages compared to the matching contralateral breast culture and an unrelated non-diseased breast reduction culture. RNA sequencing analyses showed that these three genes were upregulated increasingly with BC progression. Finally, we identified three NMPs (AHNAK, CDC37 and DNAJB1) that were significantly downregulated in DCIS and all other BC stages compared to the isogenically matched contralateral culture and the non-diseased breast reduction culture using both proteomics and RNA sequencing techniques.

2.
ACS Omega ; 9(9): 10030-10048, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463249

RESUMO

Skin cancer (SC) poses a global threat to the healthcare system and is expected to increase significantly over the next two decades if not diagnosed at an early stage. Early diagnosis is crucial for successful treatment, as the disease becomes more challenging to cure as it progresses. However, identifying new drugs, achieving clinical success, and overcoming drug resistance remain significant challenges. To overcome these obstacles and provide effective treatment, it is crucial to understand the causes of skin cancer, how cells grow and divide, factors that affect cell growth, and how drug resistance occurs. In this review, we have explained various therapeutic approaches for SC treatment via ligands, targeted photosensitizers, natural and synthetic drugs for the treatment of SC, an epigenetic approach for management of melanoma, photodynamic therapy, and targeted therapy for BRAF-mutated melanoma. This article also provides a detailed summary of the various natural drugs that are effective in managing melanoma and reducing the occurrence of skin cancer at early stages and focuses on the current status and future prospects of various therapies available for the management of skin cancer.

3.
Cells ; 12(24)2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38132175

RESUMO

Human body cells are stem cell (SC) derivatives originating from bone marrow. Their special characteristics include their capacity to support the formation and self-repair of the cells. Cancer cells multiply uncontrollably and invade healthy tissues, making stem cell transplants a viable option for cancer patients undergoing high-dose chemotherapy (HDC). When chemotherapy is used at very high doses to eradicate all cancer cells from aggressive tumors, blood-forming cells and leukocytes are either completely or partially destroyed. Autologous stem cell transplantation (ASCT) is necessary for patients in those circumstances. The patients who undergo autologous transplants receive their own stem cells (SCs). The transplanted stem cells first come into contact with the bone marrow and then undergo engraftment, before differentiating into blood cells. ASCT is one of the most significant and innovative strategies for treating diseases. Here we focus on the treatment of Hodgkin's lymphoma, non-Hodgkin's lymphoma, multiple myeloma, and AL amyloidosis, using ASCT. This review provides a comprehensive picture of the effectiveness and the safety of ASCT as a therapeutic approach for these diseases, based on the currently available evidence.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Amiloidose de Cadeia Leve de Imunoglobulina , Linfoma não Hodgkin , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Amiloidose de Cadeia Leve de Imunoglobulina/terapia , Transplante Autólogo , Linfoma não Hodgkin/terapia , Transplante de Células-Tronco
4.
Mil Med ; 185(1-2): e47-e52, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31334811

RESUMO

INTRODUCTION: Veterans of the 1991 Gulf War were potentially exposed to a mixture of stress, chemicals and radiation that may have contributed to the persistent symptoms of Gulf War Illness (GWI). The genotoxic effects of some of these exposures are mediated by the DNA nucleotide excision repair (NER) pathway. We hypothesized that individuals with relatively low DNA repair capacity would suffer greater damage from cumulative genotoxic exposures, some of which would persist, causing ongoing problems. MATERIALS AND METHODS: Blood samples were obtained from symptomatic Gulf War veterans and age-matched controls. The unscheduled DNA synthesis assay, a functional measurement of NER capacity, was performed on cultured lymphocytes, and lymphocyte mRNA was extracted and analyzed by sequencing. RESULTS: Despite our hypothesis that GWI would be associated with DNA repair deficiency, NER capacity in lymphocytes from affected GWI veterans actually exhibited a significantly elevated level of DNA repair (p = 0.016). Both total gene expression and NER gene expression successfully differentiated individuals with GWI from unaffected controls. The observed functional increase in DNA repair capacity was accompanied by an overexpression of genes in the NER pathway, as determined by RNA sequencing analysis. CONCLUSION: We suggest that the observed elevations in DNA repair capacity and NER gene expression are indicative of a "hormetic," i.e., induced or adaptive protective response to battlefield exposures. Normally such effects are short-term, but in these individuals this response has resulted in a long-term metabolic shift that may also be responsible for the persistent symptoms of GWI.


Assuntos
Síndrome do Golfo Pérsico , Veteranos , DNA , Reparo do DNA , Feminino , Guerra do Golfo , Humanos , Masculino , Síndrome do Golfo Pérsico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA