Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257500

RESUMO

Hydrogen sulphide (H2S) is a toxic gas soluble in water, H2Saq, as a weak acid. Since H2Saq usually originates from the decomposition of faecal matter, its presence also indicates sewage dumping and possible parallel waterborne pathogens associated with sewage. We here present a low footprint ('frugal') H2Saq sensor as an accessible resource for water quality monitoring. As a sensing mechanism, we find the chemical affinity of thiols to gold (Au) translates to H2Saq. When an Au electrode is used as a control gate (CG) or floating gate (FG) electrode in the electric double layer (EDL) pool of an extended gate field effect transistor (EGFET) sensor, EGFET transfer characteristics shift along the CG voltage axis in response to H2Saq. We rationalise this by the interface potential from the adsorption of polar H2S molecules to the electrode. The sign of the shift changes between Au CG and Au FG, and cancels when both electrodes are Au. The sensor is selective for H2Saq over the components of urine, nor does urine suppress the sensor's ability to detect H2Saq. Electrodes can be recovered for repeated use by washing in 1M HCl. Quantitatively, CG voltage shift is fitted by a Langmuir-Freundlich (LF) model, supporting dipole adsorption over an ionic (Nernstian) response mechanism. We find a limit-of-detection of 14.9 nM, 100 times below potability.

2.
J Water Health ; 18(2): 159-171, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32300089

RESUMO

We use the natural zeolite clinoptilolite as the sensitive element in a plasticised PVC membrane. Separating a sample pool and a reference pool with such a membrane in water-gated SnO2 thin-film transistor (SnO2 WGTFT) leads to membrane potential, and thus transistor threshold shift in response to the common drinking water pollutants Pb2+ or Cu2+ in the sample pool. Threshold shift with ion concentration, c, follows a Langmuir-Freundlich (LF) characteristic. As the LF characteristic shows the steepest slope in the limit c → 0, this opens a window to limits-of-detection (LoDs) far below the 'action levels' of the 'lead-and-copper rule' for drinking water: Pb2+: LoD 0.9 nM vs 72 nM action level, Cu2+: LoD 14 nM vs 20.5 µM action level. LoDs are far lower than for membranes using organic macrocycles as their sensitive elements. Threshold shifts at the lead and copper action levels are more significant than shifts in response to variations in the concentration of non-toxic co-cations, and we discuss in detail how to moderate interference. The selective response to lead and copper qualifies clinoptilolite-sensitised WGTFTs as a low footprint sensor technology for monitoring the lead-and-copper rule, and to confirm the effectiveness of attempts to extract lead and copper from water.


Assuntos
Cobre/isolamento & purificação , Chumbo/isolamento & purificação , Poluentes Químicos da Água/análise , Purificação da Água , Limite de Detecção , Água , Zeolitas
3.
RSC Adv ; 13(4): 2663-2671, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36741170

RESUMO

Blue emitting nitrogen-doped carbon dots were synthesized using citric acid and urea through the hydrothermal method, and the fluorescence quantum yield was 35.08%. We discovered that N-CDs featured excellent robust fluorescence stability and chemical resistance. For metronidazole detection, our N-CDs exhibited quick response time, high selectivity and sensitivity, and low cytotoxicity. Specifically, our N-CDs could detect metronidazole in the linear range of 0-179 µM, and the LOD was 0.25 µM. Furthermore, metronidazole efficaciously quenches the fluorescence of N-CDs, possibly owing to the inner filter effect. Lastly, we have employed our N-CDs to detect metronidazole in commercial metronidazole tablets with high accuracy. Overall, the newly prepared fluorescence sensor, N-CDs, demonstrated a huge potential to detect metronidazole in a simple, efficient, sensitive, and rapid manner.

4.
Micromachines (Basel) ; 11(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027961

RESUMO

We introduce fluoride-selective anion exchange resin sorbents as sensitisers into membranes for water-gated field effect transistors (WGTFTs). Sorbents were prepared via metal (La or Al)-loading of a commercial macroporous aminophosphonic acid resin, PurometTM MTS9501, and were filled into a plasticised poly(vinyl chloride) (PVC) phase transfer membrane. We found a potentiometric response (membrane potential leading to WGTFT threshold shift) to fluoride following a Langmuir-Freundlich (LF) adsorption isotherm with saturated membrane potential up to ~480 mV, extremely low characteristic concentration c1/2 = 1/K, and picomolar limit of detection (LoD), even though ion exchange did not build up charge on the resin. La-loading gave a superior response compared to Al-loading. Membrane potential characteristics were distinctly different from charge accumulating sensitisers (e.g., organic macrocycles) but similar to the Cs+ (cation) selective ion-exchanging zeolite mineral 'mordenite'. We propose a mechanism for the observed threshold shift and investigate interference from co-solutes. Strong interference from carbonate was brought under control by 'diluting' metal loading in the resin. This work sets a template for future studies using an entirely new 'family' of sensitisers in applications where very low limit of detection is essential such as for ions of arsenic, mercury, copper, palladium, and gold.

5.
Anal Chim Acta ; 1105: 1-10, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32138906

RESUMO

Morin dye is known as a cheap and readily available selective 'off → on' fluorescent sensitiser when immobilised in a phase transfer membrane for the detection of Al3+ ions. Here, a morin derivative, NaMSA, which readily dissolves in water with good long-term stability is used in conjunction with a fibre optic transducer with lock-in detection to detect Al3+ in drinking water below the potability limit. The combination of a water soluble dye and the fibre optic transducer require neither membrane preparation nor a fluorescence spectrometer yet still display a high figure-of- merit. The known ability to recover morin-based Al3+ cation sensors selectively by exposure to fluoride (F-) anions is further developed enabling a complementary sensing of either fluoride anions, or aluminium cations, using the same dye with a sub-micromolar limit-of-detection for both ions. The sensor performance parameters compare favourably to prior reports on both aqueous aluminium and fluoride ion sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA