Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1392968, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974520

RESUMO

Male and female mule ducks were subjected to a force-feeding diet to induce liver steatosis as it is generally done only with male ducks for the production of foie gras. The different biochemical measurements indicated that the course of hepatic steatosis development was present in both sexes and associated with a huge increase in liver weight mainly due to the synthesis and accumulation of lipids in hepatocytes. In livers of male and female ducks, this lipid accumulation was associated with oxidative stress and hypoxia. However, certain specific modifications (kinetics of lipid droplet development and hepatic inflammation) indicate that female ducks may tolerate force-feeding less well, at least at the hepatic level. This is in contradiction with what is generally reported concerning hepatic steatosis induced by dietary disturbances in mammals but could be explained by the very specific conditions imposed by force-feeding. Despite this, force-feeding female ducks seems entirely feasible, provided that the final quality of the product is as good as that of the male ducks, which will remain to be demonstrated in future studies.

2.
Mol Nutr Food Res ; 68(1): e2300491, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37888831

RESUMO

SCOPE: Non-alcoholic fatty liver disease (NAFLD) is a sexually dimorphic disease influenced by dietary factors. Here, the metabolic and hepatic effects of dietary amino acid (AA) source is assessed in Western diet (WD)-induced NAFLD in male and female mice. METHODS AND RESULTS: The AA source is either casein or a free AA mixture mimicking the composition of casein. As expected, males fed a casein-based WD display glucose intolerance, fasting hyperglycemia, and insulin-resistance and develop NAFLD associated with changes in hepatic gene expression and microbiota dysbiosis. In contrast, males fed the AA-based WD show no steatosis, a similar gene expression profile as males fed a control diet, and a distinct microbiota composition compared to males fed a casein-based WD. Females are protected against WD-induced liver damage, hepatic gene expression, and gut microbiota changes regardless of the AA source. CONCLUSIONS: Free dietary AA intake prevents the unhealthy metabolic outcomes of a WD preferentially in male mice.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Feminino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Caseínas/farmacologia , Fígado/metabolismo , Dieta Ocidental/efeitos adversos , Aminoácidos/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
3.
Redox Biol ; 53: 102333, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35588638

RESUMO

Maternal environment, including nutrition and microbiota, plays a critical role in determining offspring's risk of chronic diseases such as diabetes later in life. Heme iron requirement is amplified during pregnancy and lactation, while excessive dietary heme iron intake, compared to non-heme iron, has shown to trigger acute oxidative stress in the gut resulting from reactive aldehyde formation in conjunction with microbiota reshape. Given the immaturity of the antioxidant defense system in early life, we investigated the extent to which a maternal diet enriched with heme iron may have a lasting impact on gut homeostasis and glucose metabolism in 60-day-old C3H/HeN mice offspring. As hypothesized, the form of iron added to the maternal diet differentially governed the offspring's microbiota establishment despite identical fecal iron status in the offspring. Importantly, despite female offspring was unaffected, oxidative stress markers were however higher in the gut of male offspring from heme enriched-fed mothers, and were accompanied by increases in fecal lipocalin-2, intestinal para-cellular permeability and TNF-α expression. In addition, male mice displayed blood glucose intolerance resulting from impaired insulin secretion following oral glucose challenge. Using an integrated approach including an aldehydomic analysis, this male-specific phenotype was further characterized and revealed close covariations between unidentified putative reactive aldehydes and bacterial communities belonging to Bacteroidales and Lachnospirales orders. Our work highlights how the form of dietary iron in the maternal diet can dictate the oxidative status in gut offspring in a sex-dependent manner, and how a gut microbiota-driven oxidative challenge in early life can be associated with gut barrier defects and glucose metabolism disorders that may be predictive of diabetes development.


Assuntos
Intolerância à Glucose , Microbiota , Animais , Dieta Hiperlipídica , Feminino , Intolerância à Glucose/etiologia , Heme , Ferro , Masculino , Camundongos , Camundongos Endogâmicos C3H , Estresse Oxidativo , Gravidez
4.
Neurogastroenterol Motil ; 31(11): e13701, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31518490

RESUMO

BACKGROUND: This study aimed to determine whether patients with IBS displayed altered mucosal mast cell (MC) numbers and proportions of MCs co-localizing with nerves compared with healthy subjects (HS) and whether these MC characteristics correlated with IBS symptoms, elements of the epithelial barrier, or visceral sensitivity. METHODS: Mucosal MC characteristics were determined using immunoassay. IBS symptoms, gene expression of elements of the epithelial barrier, fecal serine protease activity, and visceral sensitivity were assessed. KEY RESULTS: The MC numbers per mm2 were 2.0 (0.0-6.0) in patients with IBS (n = 43) and 3.5 (1.1-9.1) in HS (n = 20, P = .26). Of these, MCs were 0.0 (0.0-20) % vs 3.1 (0.0-18) % (P = .76) in IBS and HS, respectively, in co-localization with nerve fibers. MC characteristics were equivalent in the different IBS subtypes. Hierarchical cluster analysis identified two distinct groups among patients with IBS: MC high (higher MC numbers and proportions of MCs co-localizing with nerves) and MC low (lower MC numbers and proportions of MCs co-localizing with nerves). The MC high and MC low groups could not be discriminated with regard to IBS symptoms, parameters of visceral sensitivity, gene expression of elements of the epithelial barrier, and fecal protease activity. CONCLUSION AND INFERENCES: There was no evidence of increased infiltration or altered localization of MCs in the colonic mucosa of patients with IBS. These MC characteristics were not linked to global IBS symptoms or mucosal expression of elements of the epithelial barrier. These findings indicate that quantity and location of mucosal MCs are factors not involved in the pathophysiology of IBS.


Assuntos
Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Síndrome do Intestino Irritável/imunologia , Síndrome do Intestino Irritável/patologia , Mastócitos/imunologia , Adulto , Colo/imunologia , Colo/metabolismo , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA