RESUMO
BACKGROUND: With the remarkable increasing in the numbers of patients, the triaging and prioritizing patients into multi-emergency level is required to accommodate all the patients, save more lives, and manage the medical resources effectively. Triaging and prioritizing patients becomes particularly challenging especially for the patients who are far from hospital and use telemedicine system. To this end, the researchers exploiting the useful tool of machine learning to address this challenge. Hence, carrying out an intensive investigation and in-depth study in the field of using machine learning in E-triage and patient priority are essential and required. OBJECTIVES: This research aims to (1) provide a literature review and an in-depth study on the roles of machine learning in the fields of electronic emergency triage (E-triage) and prioritize patients for fast healthcare services in telemedicine applications. (2) highlight the effectiveness of machine learning methods in terms of algorithms, medical input data, output results, and machine learning goals in remote healthcare telemedicine systems. (3) present the relationship between machine learning goals and the electronic triage processes specifically on the: triage levels, medical features for input, outcome results as outputs, and the relevant diseases. (4), the outcomes of our analyses are subjected to organize and propose a cross-over taxonomy between machine learning algorithms and telemedicine structure. (5) present lists of motivations, open research challenges and recommendations for future intelligent work for both academic and industrial sectors in telemedicine and remote healthcare applications. METHODS: An intensive research is carried out by reviewing all articles related to the field of E-triage and remote priority systems that utilise machine learning algorithms and sensors. We have searched all related keywords to investigate the databases of Science Direct, IEEE Xplore, Web of Science, PubMed, and Medline for the articles, which have been published from January 2012 up to date. RESULTS: A new crossover matching between machine learning methods and telemedicine taxonomy is proposed. The crossover-taxonomy is developed in this study to identify the relationship between machine learning algorithm and the equivalent telemedicine categories whereas the machine learning algorithm has been utilized. The impact of utilizing machine learning is composed in proposing the telemedicine architecture based on synchronous (real-time/ online) and asynchronous (store-and-forward / offline) structure. In addition to that, list of machine learning algorithms, list of the performance metrics, list of inputs data and outputs results are presented. Moreover, open research challenges, the benefits of utilizing machine learning and the recommendations for new research opportunities that need to be addressed for the synergistic integration of multidisciplinary works are organized and presented accordingly. DISCUSSION: The state-of-the-art studies on the E-triage and priority systems that utilise machine learning algorithms in telemedicine architecture are discussed. This approach allows the researchers to understand the modernisation of healthcare systems and the efficient use of artificial intelligence and machine learning. In particular, the growing worldwide population and various chronic diseases such as heart chronic diseases, blood pressure and diabetes, require smart health monitoring systems in E-triage and priority systems, in which machine learning algorithms could be greatly beneficial. CONCLUSIONS: Although research directions on E-triage and priority systems that use machine learning algorithms in telemedicine vary, they are equally essential and should be considered. Hence, we provide a comprehensive review to emphasise the advantages of the existing research in multidisciplinary works of artificial intelligence, machine learning and healthcare services.
Assuntos
Telemedicina , Triagem , Inteligência Artificial , Eletrônica , Humanos , Aprendizado de Máquina , Motivação , TecnologiaRESUMO
This paper provides simulated datasets for triaging and prioritizing patients that are essentially required to support multi emergency levels. To this end, four types of input signals are presented, namely, electrocardiogram (ECG), blood pressure, and oxygen saturation (SpO2), where the latter is text. To obtain the aforementioned signals, the PhysioNet online library [1], is used, which is considered as one of the most reliable and relevant libraries in the healthcare services and bioinformatics sciences. In particular, this library contains collections of several databases and signals, where some of these signals are related to ECG, blood pressure, and SpO2 sensor. The simulated datasets, which are accompanied by codes, are presented in this paper. The contributions of our work, which are related to the presented dataset, can be summarized as follow. (1) The presented dataset is considered as an essential feature that is extracted from the signal records. Specifically, the dataset includes medical vital features such as: QRS width; ST elevation; peaks number; cycle interval from ECG signal; SpO2 level from SpO2 signal; high blood (systolic) pressure value; and low-pressure (diastolic) value from blood pressure signal. These essential features have been extracted based on our machine learning algorithms. In addition, new medical features are added based on medical doctors' recommendations, which are given as text-inputs, e.g., chest pain, shortness of breath, palpitation, and whether the patient at rest or not. All these features are considered to be significant symptoms for many diseases such as: heart attack or stroke; sleep apnea; heart failure; arrhythmia; and blood pressure chronic diseases. (2) The formulated dataset is considered in the doctor diagnostic procedures for identifying the patients' emergency level. (3) In the PhysioNet online library [1], the ECG, blood pressure, and SpO2 have been represented as signals. In contrast, we use some signal processing techniques to re-present the dataset by numeric values, which enable us to extract the essential features of the dataset in Excel sheet representations. (4) The dataset is re-organized and re-formatted to be presented in a useful structure feasible format. Specifically, the dataset is re-presented in terms of tables to illustrate the patient's profile and the type of diseases. (5) The presented dataset is utilized in the evaluation of medical monitoring and healthcare provisioning systems [2]. (6) Some simulated codes for feature extractions are also provided in this paper.