Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 14(1): 101-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25218059

RESUMO

The microscopic kinetics of ubiquitous solid-solid phase transitions remain poorly understood. Here, by using single-particle-resolution video microscopy of colloidal films of diameter-tunable microspheres, we show that transitions between square and triangular lattices occur via a two-step diffusive nucleation pathway involving liquid nuclei. The nucleation pathway is favoured over the direct one-step nucleation because the energy of the solid/liquid interface is lower than that between solid phases. We also observed that nucleation precursors are particle-swapping loops rather than newly generated structural defects, and that coherent and incoherent facets of the evolving nuclei exhibit different energies and growth rates that can markedly alter the nucleation kinetics. Our findings suggest that an intermediate liquid should exist in the nucleation processes of solid-solid transitions of most metals and alloys, and provide guidance for better control of the kinetics of the transition and for future refinements of solid-solid transition theory.

2.
Soft Matter ; 11(46): 9020-5, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26412312

RESUMO

Clusters of fast and slow correlated particles, identified as dynamical heterogeneities (DHs), constitute a central aspect of glassy dynamics. A key factor of the glass transition scenario is a significant increase of the cluster size ξ4 as the transition is approached. In need of easy-to-compute tools to measure ξ4, the dynamical susceptibility χ4 was introduced recently, and used in various experimental studies to probe DHs. Here, we investigate DHs in dense microgel suspensions using image correlation analysis, and compute both χ4 and the four-point correlation function G4. The spatial decrease of G4 provides a direct access to ξ4, which is found to grow significantly with increasing volume fraction. However, this increase is not captured by χ4. We show that the assumptions that validate the connection between χ4 and ξ4 are not fulfilled in our experiments.

3.
Nature ; 459(7244): 230-3, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19444211

RESUMO

When the packing fraction is increased sufficiently, loose particulates jam to form a rigid solid in which the constituents are no longer free to move. In typical granular materials and foams, the thermal energy is too small to produce structural rearrangements. In this zero-temperature (T = 0) limit, multiple diverging and vanishing length scales characterize the approach to a sharp jamming transition. However, because thermal motion becomes relevant when the particles are small enough, it is imperative to understand how these length scales evolve as the temperature is increased. Here we used both colloidal experiments and computer simulations to progress beyond the zero-temperature limit to track one of the key parameters-the overlap distance between neighbouring particles-which vanishes at the T = 0 jamming transition. We find that this structural feature retains a vestige of its T = 0 behaviour and evolves in an unusual manner, which has masked its appearance until now. It is evident as a function of packing fraction at fixed temperature, but not as a function of temperature at fixed packing fraction or pressure. Our results conclusively demonstrate that length scales associated with the T = 0 jamming transition persist in thermal systems, not only in simulations but also in laboratory experiments.

4.
Nature ; 456(7224): 898-903, 2008 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19092926

RESUMO

Geometric frustration arises when lattice structure prevents simultaneous minimization of local interaction energies. It leads to highly degenerate ground states and, subsequently, to complex phases of matter, such as water ice, spin ice, and frustrated magnetic materials. Here we report a simple geometrically frustrated system composed of closely packed colloidal spheres confined between parallel walls. Diameter-tunable microgel spheres are self-assembled into a buckled triangular lattice with either up or down displacements, analogous to an antiferromagnetic Ising model on a triangular lattice. Experiment and theory reveal single-particle dynamics governed by in-plane lattice distortions that partially relieve frustration and produce ground states with zigzagging stripes and subextensive entropy, rather than the more random configurations and extensive entropy of the antiferromagnetic Ising model. This tunable soft-matter system provides a means to directly visualize the dynamics of frustration, thermal excitations and defects.

5.
J Chem Phys ; 134(3): 034506, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21261367

RESUMO

We studied the two-dimensional freezing transitions in monolayers of microgel colloidal spheres with short-ranged repulsions in video-microscopy experiments, and monolayers of hard disks, and Yukawa particles in simulations. These systems share two common features at the freezing points: (1) the bimodal distribution profile of the local orientational order parameter; (2) the two-body excess entropy, s(2), reaches -4.5±0.5 k(B). Both features are robust and sensitive to the freezing points, so that they can potentially serve as empirical freezing criteria in two dimensions. Compared with the conventional freezing criteria, the first feature has no finite-size ambiguities and can be resolved adequately with much less statistics; and the second feature can be directly measured in macroscopic experiments without the need for microscopic information.


Assuntos
Congelamento , Acrilamidas/química , Coloides/química , Géis/química , Transição de Fase
6.
J Chem Phys ; 132(15): 154501, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20423183

RESUMO

Video microscopy was employed to explore crystallization of colloidal monolayers composed of diameter-tunable microgel spheres. Two-dimensional (2D) colloidal liquids were frozen homogenously into polycrystalline solids, and four 2D criteria for freezing were experimentally tested in thermal systems for the first time: the Hansen-Verlet freezing rule, the Lowen-Palberg-Simon dynamical freezing criterion, and two other rules based, respectively, on the split shoulder of the radial distribution function and on the distribution of the shape factor of Voronoi polygons. Importantly, these freezing criteria, usually applied in the context of single crystals, were demonstrated to apply to the formation of polycrystalline solids. At the freezing point, we also observed a peak in the fluctuations of the orientational order parameter and a percolation transition associated with caged particles. Speculation about these percolated clusters of caged particles casts light on solidification mechanisms and dynamic heterogeneity in freezing.

7.
Sci Rep ; 5: 18432, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26656207

RESUMO

Nematic droplets are droplets composed of elongated molecules that tend to point in the same direction but do not have any positional order. Such droplets are well known to adopt a spindle shape called tactoid. How such droplets condensate or melt and how the orientational symmetry is broken remains however unclear. Here we use a colloidal system composed of filamentous viruses as model rod-like colloids and pnipam microgel particles to induce thermo-sensitive depletion attraction between the rods. Microscopy experiments coupled to particle tracking reveal that the condensation of a nematic droplet is preceded by the formation of a new phase, an isotropic droplet. As the viruses constitute an excellent experimental realization of hard rods, it follows that the phenomenology we describe should be relevant to diverse micro- and nano-sized rods that interact through excluded volume interactions. This transition between isotropic and nematic droplets provides a new and reversible pathway to break the symmetry and order colloidal rods within a droplet with an external stimulus, and could constitute a benchmark experiment for a variety of technologies relying on reconfigurable control of rods.

8.
J Colloid Interface Sci ; 405: 96-102, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23773610

RESUMO

Poly(N-isopropylacrylamide) microgel particles are synthesized using a semi-batch surfactant-free emulsion polymerization method. Particle diameter can be precisely adjusted by controlling the initial conditions, the electrolyte concentration, and the monomer feeding rate and duration. Larger particles are obtained in the presence of small amounts of co-monomer with cationic amino groups that compete against the negative charges arising from the initiator. Monodisperse particles with uniform cross-linker density, homogeneous optical properties, and pronounced thermoresponsivity are readily produced with a wide variety of diameters ranging from several hundred nanometers to a few micrometers. The charge stabilization mechanisms that control particle growth are discussed.


Assuntos
Resinas Acrílicas/química , Técnicas Biossensoriais , Coloides/química , Reagentes de Ligações Cruzadas/química , Cristalização , Hidrogéis/química , Luz , Distribuição Normal , Tamanho da Partícula , Polímeros/química , Espalhamento de Radiação , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA