Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Neuroimage ; 279: 120303, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536525

RESUMO

Convolutional neural networks (CNN) have demonstrated good accuracy and speed in spatially registering high signal-to-noise ratio (SNR) structural magnetic resonance imaging (sMRI) images. However, some functional magnetic resonance imaging (fMRI) images, e.g., those acquired from arterial spin labeling (ASL) perfusion fMRI, are of intrinsically low SNR and therefore the quality of registering ASL images using CNN is not clear. In this work, we aimed to explore the feasibility of a CNN-based affine registration network (ARN) for registration of low-SNR three-dimensional ASL perfusion image time series and compare its performance with that from the state-of-the-art statistical parametric mapping (SPM) algorithm. The six affine parameters were learned from the ARN using both simulated motion and real acquisitions from ASL perfusion fMRI data and the registered images were generated by applying the transformation derived from the affine parameters. The speed and registration accuracy were compared between ARN and SPM. Several independent datasets, including meditation study (10 subjects × 2), bipolar disorder study (26 controls, 19 bipolar disorder subjects), and aging study (27 young subjects, 33 older subjects), were used to validate the generality of the trained ARN model. The ARN method achieves superior image affine registration accuracy (total translation/total rotation errors of ARN vs. SPM: 1.17 mm/1.23° vs. 6.09 mm/12.90° for simulated images and reduced MSE/L1/DSSIM/Total errors of 18.07% / 19.02% / 0.04% / 29.59% for real ASL test images) and 4.4 times (ARN vs. SPM: 0.50 s vs. 2.21 s) faster speed compared to SPM. The trained ARN can be generalized to align ASL perfusion image time series acquired with different scanners, and from different image resolutions, and from healthy or diseased populations. The results demonstrated that our ARN markedly outperforms the iteration-based SPM both for simulated motion and real acquisitions in terms of registration accuracy, speed, and generalization.


Assuntos
Aprendizado Profundo , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Redes Neurais de Computação , Algoritmos , Marcadores de Spin , Processamento de Imagem Assistida por Computador/métodos , Circulação Cerebrovascular
2.
Neuroimage ; 265: 119785, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464096

RESUMO

BACKGROUND: To investigate the association of ihMT (inhom signals with the demyelination and remyelination phases of the acute cuprizone mouse model in comparison with histology, and to assess the extent of tissue damage and repair from MRI data. METHODS: Acute demyelination by feeding 0.2% cuprizone for five weeks, followed by a four-week remyelination period was applied on genetically modified plp-GFP mice. Animals were scanned at different time points of the demyelination and remyelination phases of the cuprizone model using a multimodal MRI protocol, including ihMT T1D-filters, MPF (Macromolecular Proton Fraction) and R1 (longitudinal relaxation rate). For histology, plp-GFP (proteolipid protein - Green Fluorescent Protein) microscopy and LFB (Luxol Fast Blue) staining were employed as references for the myelin content. Comparison of MRI with histology was performed in the medial corpus callosum (mCC) and cerebral cortex (CTX) at two brain levels whereas ROI-wise and voxel-based analyses of the MRI metrics allowed investigating in vivo the spatial extent of myelin alterations. RESULTS: IhMT high-pass T1D-filters, targeted toward long T1D components, showed significant temporal variations in the mCC consistent with the effects induced by the cuprizone toxin. In addition, the corresponding signals correlated strongly and significantly with the myelin content assessed by GFP fluorescence and LFB staining over the demyelination and the remyelination phases. The signal of the band-pass T1D-filter, which isolates short T1D components, showed changes over time that were poorly correlated with histology, hence suggesting a sensitivity to pathological processes possibly not related to myelin. Although MPF was also highly correlated to histology, ihMT high-pass T1D-filters showed better capability to characterize the spatial-temporal patterns during the demyelination and remyelination phases of the acute cuprizone model (e.g., rostro-caudal gradient of demyelination in the mCC previously described in the literature). CONCLUSIONS: IhMT sequences selective for long T1D components are specific and sensitive in vivo markers of demyelination and remyelination and have successfully captured the spatially heterogeneous pattern of the demyelination and remyelination mechanisms in the cuprizone model. Interestingly, differences in signal variations between the ihMT high-pass and band-pass T1D-filter, suggest a sensitivity of the ihMT sequences targeted to short T1Ds to alterations other than those of myelin. Future studies will need to further address these differences by examining more closely the origin of the short T1D components and the variation of each T1D component in pathology.


Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Camundongos , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/metabolismo , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Magn Reson Med ; 89(2): 550-564, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36306334

RESUMO

PURPOSE: To evaluate the benefits of fast spin echo (FSE) imaging over rapid gradient-echo (RAGE) for magnetization-prepared inhomogeneous magnetization transfer (ihMT) imaging. METHODS: A 3D FSE sequence was modified to include an ihMT preparation (ihMT-FSE) with an optional CSF suppression based on an inversion-recovery (ihMT-FLAIR). After numeric simulations assessing SNR benefits of FSE and the potential impact of an additional inversion-recovery, ihMT-RAGE, ihMT-FSE, and ihMT-FLAIR sequences were compared in a group of six healthy volunteers, evaluating image quality, thermal, and physiological noise as well as quantification using an ihMT saturation (ihMTsat) approach. A preliminary exploration in the cervical spinal cord was also conducted in a group of three healthy volunteers. RESULTS: Several fold improvements in thermal SNR were observed with ihMT-FSE in agreement with numerical simulations. However, we observed significantly higher physiological noise in ihMT-FSE compared to ihMT-RAGE that was mitigated in ihMT-FLAIR, which provided the best total SNR (+74% and +49% compared to ihMT-RAGE in the white and gray matter, P ≤ 0.004). IhMTsat quantification was successful in all cases with strong correlation between all sequences (r2 > 0.75). Early experiments showed potential for spinal cord imaging. CONCLUSIONS: FSE generally offers higher SNR compared to gradient-echo based acquisitions for magnetization-prepared contrasts as illustrated here in the case of ihMT. However, physiological noise has a significant effect, but an inversion-recovery-based CSF suppression was shown to be efficient in mitigating effects of CSF motion.


Assuntos
Substância Cinzenta , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Meios de Contraste , Medula Espinal/diagnóstico por imagem , Movimento (Física)
4.
Magn Reson Med ; 90(3): 875-893, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37154400

RESUMO

PURPOSE: To demonstrate the bias in quantitative MT (qMT) measures introduced by the presence of dipolar order and on-resonance saturation (ONRS) effects using magnetization transfer (MT) spoiled gradient-recalled (SPGR) acquisitions, and propose changes to the acquisition and analysis strategies to remove these biases. METHODS: The proposed framework consists of SPGR sequences prepared with simultaneous dual-offset frequency-saturation pulses to cancel out dipolar order and associated relaxation (T1D ) effects in Z-spectrum acquisitions, and a matched quantitative MT (qMT) mathematical model that includes ONRS effects of readout pulses. Variable flip angle and MT data were fitted jointly to simultaneously estimate qMT parameters (macromolecular proton fraction [MPF], T2,f , T2,b , R, and free pool T1 ). This framework is compared with standard qMT and investigated in terms of reproducibility, and then further developed to follow a joint single-point qMT methodology for combined estimation of MPF and T1 . RESULTS: Bland-Altman analyses demonstrated a systematic underestimation of MPF (-2.5% and -1.3%, on average, in white and gray matter, respectively) and overestimation of T1 (47.1 ms and 38.6 ms, on average, in white and gray matter, respectively) if both ONRS and dipolar order effects are ignored. Reproducibility of the proposed framework is excellent (ΔMPF = -0.03% and ΔT1 = -19.0 ms). The single-point methodology yielded consistent MPF and T1 values with respective maximum relative average bias of -0.15% and -3.5 ms found in white matter. CONCLUSION: The influence of acquisition strategy and matched mathematical model with regard to ONRS and dipolar order effects in qMT-SPGR frameworks has been investigated. The proposed framework holds promise for improved accuracy with reproducibility.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Cinzenta , Modelos Teóricos , Prótons , Substâncias Macromoleculares , Encéfalo/diagnóstico por imagem
5.
NMR Biomed ; 36(6): e4808, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35916067

RESUMO

Off-resonance radio frequency irradiation can induce the ordering of proton spins in the dipolar fields of their neighbors, in molecules with restricted mobility. This dipolar order decays with a characteristic relaxation time, T1D , that is very different from the T1 and T2 relaxation of the nuclear alignment with the main magnetic field. Inhomogeneous magnetization transfer (ihMT) imaging is a refinement of magnetization transfer (MT) imaging that isolates the MT signal dependence on dipolar order relaxation times within motion-constrained molecules. Because T1D relaxation is a unique contrast mechanism, ihMT may enable improved characterization of tissue. Initial work has stressed the high correlation between ihMT signal and myelin density. Dipolar order relaxation appears to be much longer in membrane lipids than other molecules. Recent work has shown, however, that ihMT acquisitions may also be adjusted to emphasize different ranges of T1D . These newer approaches may be sensitive to other microstructural components of tissue. Here, we review the concepts and history of ihMT and outline the requirements for further development to realize its full potential.


Assuntos
Imageamento por Ressonância Magnética , Bainha de Mielina , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/química , Lipídeos de Membrana , Campos Magnéticos , Movimento (Física)
6.
Radiology ; 305(1): 5-18, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040334

RESUMO

This review on brain multiparametric quantitative MRI (MP-qMRI) focuses on the primary subset of quantitative MRI (qMRI) parameters that represent the mobile ("free") and bound ("motion-restricted") proton pools. Such primary parameters are the proton densities, relaxation times, and magnetization transfer parameters. Diffusion qMRI is also included because of its wide implementation in complete clinical MP-qMRI application. MP-qMRI advances were reviewed over the past 2 decades, with substantial progress observed toward accelerating image acquisition and increasing mapping accuracy. Areas that need further investigation and refinement are identified as follows: (a) the biologic underpinnings of qMRI parameter values and their changes with age and/or disease and (b) the theoretical limitations implicitly built into most qMRI mapping algorithms that do not distinguish between the different spatial scales of voxels versus spin packets, the central physical object of the Bloch theory. With rapidly improving image processing techniques and continuous advances in computer hardware, MP-qMRI has the potential for implementation in a wide range of clinical applications. Currently, three emerging MP-qMRI applications are synthetic MRI, macrostructural qMRI, and microstructural tissue modeling.


Assuntos
Produtos Biológicos , Prótons , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
7.
Magn Reson Med ; 87(3): 1346-1359, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34779020

RESUMO

PURPOSE: To minimize the sensitivity of inhomogeneous magnetization transfer gradient-echo (ihMT-GRE) imaging to radiofrequency (RF) transmit field ( B1+ ) inhomogeneities at 3 T. METHODS: The ihMT-GRE sequence was optimized by varying the concentration of the RF saturation energy over time, obtained by increasing the saturation pulse power while extending the sequence repetition time (TR). Different protocols were tested using numerical simulations and human in vivo experiments in the brain white matter (WM) of healthy subjects at 3 T. The sensitivity of the ihMT ratio (ihMTR) to B1+ variations was investigated by comparing measurements obtained at nominal transmitter adjustments and following a 20% global B1+ drop. The resulting relative variations (δihMTR ) were evaluated voxelwise as a function of the local B1+ distribution. The reproducibility of the protocol providing minimal B1+ bias was assessed in a test-retest experiment. RESULTS: In line with simulations, ihMT-GRE experiments conducted at high concentration of the RF energy over time demonstrated strong reduction of the B1+ inhomogeneity effects in the human WM. Under the optimal conditions of 350-ms TR and 3-µT root mean square (RMS) saturation power, 73% of all WM voxels presented δihMTR below 10%. Reproducibility analysis yielded a close-to-zero systematic bias (ΔihMTR = -0.081%) and a high correlation (ρ² = 0.977) between test and retest experiments. CONCLUSION: Concentrating RF saturation energy in ihMT-GRE sequences mitigates the sensitivity of the ihMTR to B1+ variations and allows for clinical-ready ihMT imaging at 3 T. This feature is of particular interest for high and ultra-high field applications.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Ondas de Rádio , Reprodutibilidade dos Testes
8.
Magn Reson Med ; 87(5): 2329-2346, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35001427

RESUMO

PURPOSE: To investigate the long- and short-T1D components correlation with myelin content using inhomogeneous magnetization transfer (ihMT) high-pass and band-pass T1D -filters and to compare ihMT, R1 , and the macromolecular proton fraction (MPF) for myelin specific imaging. METHODS: The 3D ihMT rapid gradient echo (ihMTRAGE) sequences with increasing switching times (Δt) were used to derive ihMT high-pass T1D -filters with increasing T1D cutoff values and an ihMT band-pass T1D -filter for components in the 100 µs to 1 ms range. 3D spoiled gradient echo quantitative MT (SPGR-qMT) protocols were used to derive R1 and MPF maps. The specificity of R1 , MPF, and ihMT T1D -filters was evaluated by comparison with two histological reference techniques for myelin imaging. RESULTS: The higher contribution of long-T1D s as compared to the short components as Δt got longer led to an increase in the specificity to myelination. In contrast, focusing on the signal originating from a narrow range of short-T1D s (< 1 ms) as isolated by the band-pass T1D -filter led to lower specificity. In addition, the significantly lower r2 correlation coefficient of the band-pass T1D -filter suggests that the origin of short-T1D components is mostly associated with non-myelin protons. Also, the important contribution of short-T1D s to the estimated MPF, explains its low specificity to myelination as compared to the ihMT high-pass T1D -filters. CONCLUSION: Long-T1D components imaging by means of ihMT high-pass T1D -filters is proposed as an MRI biomarker for myelin content. Future studies should enable the investigation of the sensitivity of ihMT T1D -filters for demyelinating processes.


Assuntos
Bainha de Mielina , Substância Branca , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Prótons
9.
Magn Reson Med ; 87(5): 2313-2328, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35037302

RESUMO

PURPOSE: To identify T1D -filtering methods, which can specifically isolate various ranges of T1D components as they may be sensitive to different microstructural properties. METHODS: Modified Bloch-Provotorov equations describing a bi-T1D component biophysical model were used to simulate the inhomogeneous magnetization transfer (ihMT) signal from ihMTRAGE sequences at high RF power and low duty-cycle with different switching time values for the dual saturation experiment: Δt = 0.0, 0.8, 1.6, and 3.2 ms. Simulations were compared with experimental signals on the brain gray and white matter tissues of healthy mice at 7T. RESULTS: The lengthening of Δt created ihMT high-pass T1D -filters, which efficiently eliminated the signal from T1D components shorter than 1 ms, while partially attenuating that of longer components (≥ 1 ms). Subtraction of ihMTR images obtained with Δt = 0.0 ms and Δt = 0.8 ms generated a new ihMT band-pass T1D -filter isolating short-T1D components in the 100-µs to 1-ms range. Simulated ihMTR values in central nervous system tissues were confirmed experimentally. CONCLUSION: Long- and short-T1D components were successfully isolated with high RF power and low duty-cycle ihMT filters in the healthy mouse brain. Future studies should investigate the various T1D -range microstructural correlations in in vivo tissues.


Assuntos
Processamento de Imagem Assistida por Computador , Substância Branca , Animais , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos , Bainha de Mielina/química , Substância Branca/diagnóstico por imagem
10.
Magn Reson Med ; 88(4): 1528-1547, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35819184

RESUMO

This review article provides an overview of the current status of velocity-selective arterial spin labeling (VSASL) perfusion MRI and is part of a wider effort arising from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. Since publication of the 2015 consensus paper on arterial spin labeling (ASL) for cerebral perfusion imaging, important advancements have been made in the field. The ASL community has, therefore, decided to provide an extended perspective on various aspects of technical development and application. Because VSASL has the potential to become a principal ASL method because of its unique advantages over traditional approaches, an in-depth discussion was warranted. VSASL labels blood based on its velocity and creates a magnetic bolus immediately proximal to the microvasculature within the imaging volume. VSASL is, therefore, insensitive to transit delay effects, in contrast to spatially selective pulsed and (pseudo-) continuous ASL approaches. Recent technical developments have improved the robustness and the labeling efficiency of VSASL, making it a potentially more favorable ASL approach in a wide range of applications where transit delay effects are of concern. In this review article, we (1) describe the concepts and theoretical basis of VSASL; (2) describe different variants of VSASL and their implementation; (3) provide recommended parameters and practices for clinical adoption; (4) describe challenges in developing and implementing VSASL; and (5) describe its current applications. As VSASL continues to undergo rapid development, the focus of this review is to summarize the fundamental concepts of VSASL, describe existing VSASL techniques and applications, and provide recommendations to help the clinical community adopt VSASL.


Assuntos
Circulação Cerebrovascular , Angiografia por Ressonância Magnética , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Perfusão , Marcadores de Spin
11.
Dig Dis Sci ; 67(7): 3455-3463, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34297268

RESUMO

BACKGROUND: Preclinical studies have shown that modulation of the tumor microvasculature with anti-angiogenic agents decreases tumor perfusion and may increase the efficacy of radiofrequency ablation (RFA) in hepatocellular carcinoma (HCC). Retrospective studies suggest that sorafenib given prior to RFA promotes an increase in the ablation zone, but prospective randomized data are lacking. AIMS: We conducted a randomized, double-blind, placebo-controlled phase II trial to evaluate the efficacy of a short-course of sorafenib prior to RFA for HCC tumors sized 3.5-7 cm (NCT00813293). METHODS: Treatment consisted of sorafenib 400 mg twice daily for 10 days or matching placebo, followed by RFA on day 10. The primary objectives were to assess if priming with sorafenib increased the volume and diameter of the RFA coagulation zone and to evaluate its impact on RFA thermal parameters. Secondary objectives included feasibility, safety and to explore the relationship between tumor blood flow on MRI and RFA effectiveness. RESULTS: Twenty patients were randomized 1:1. Priming with sorafenib did not increase the size of ablation zone achieved with RFA and did not promote significant changes in thermal parameters, although it significantly decreased blood perfusion to the tumor by 27.9% (p = 0.01) as analyzed by DCE-MRI. No subject discontinued treatment owing to adverse events and no grade 4 toxicity was observed. CONCLUSION: Priming of sorafenib did not enhance the effect of RFA in intermediate sized HCC. Future studies should investigate whether longer duration of treatment or a different antiangiogenic strategy in the post-procedure setting would be more effective in impairing tumor perfusion and increasing RFA efficacy.


Assuntos
Carcinoma Hepatocelular , Ablação por Cateter , Neoplasias Hepáticas , Ablação por Radiofrequência , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/cirurgia , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/cirurgia , Niacinamida/efeitos adversos , Compostos de Fenilureia/efeitos adversos , Estudos Prospectivos , Ablação por Radiofrequência/efeitos adversos , Ablação por Radiofrequência/métodos , Estudos Retrospectivos , Sorafenibe/uso terapêutico , Resultado do Tratamento
12.
Neuroimage ; 237: 118144, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991697

RESUMO

We used three dose levels (Sham, 2 mA, and 4 mA) and two different electrode montages (unihemispheric and bihemispheric) to examine DOSE and MONTAGE effects on regional cerebral blood flow (rCBF) as a surrogate marker of neural activity, and on a finger sequence task, as a surrogate behavioral measure drawing on brain regions targeted by transcranial direct current stimulation (tDCS). We placed the anodal electrode over the right motor region (C4) while the cathodal or return electrode was placed either over a left supraorbital region (unihemispheric montage) or over the left motor region (C3 in the bihemispheric montage). Performance changes in the finger sequence task for both hands (left hand: p = 0.0026, and right hand: p = 0.0002) showed a linear tDCS dose response but no montage effect. rCBF in the right hemispheric perirolandic area increased with dose under the anodal electrode (p = 0.027). In contrast, in the perirolandic ROI in the left hemisphere, rCBF showed a trend to increase with dose (p = 0.053) and a significant effect of montage (p = 0.00004). The bihemispheric montage showed additional rCBF increases in frontomesial regions in the 4mA condition but not in the 2 mA condition. Furthermore, we found strong correlations between simulated current density in the left and right perirolandic region and improvements in the finger sequence task performance (FSP) for the contralateral hand. Our data support not only a strong direct tDCS dose effect for rCBF and FSP as surrogate measures of targeted brain regions but also indirect effects on rCBF in functionally connected regions (e.g., frontomesial regions), particularly in the higher dose condition and on FSP of the ipsilateral hand (to the anodal electrode). At a higher dose and irrespective of polarity, a wider network of sensorimotor regions is positively affected by tDCS.


Assuntos
Circulação Cerebrovascular/fisiologia , Atividade Motora/fisiologia , Rede Nervosa/fisiologia , Córtex Sensório-Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Feminino , Dedos , Humanos , Imageamento por Ressonância Magnética , Masculino , Marcadores de Spin , Estimulação Transcraniana por Corrente Contínua/métodos
13.
Neuroimage ; 225: 117442, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039620

RESUMO

BACKGROUND: Myelin specific imaging techniques to characterize white matter in demyelinating diseases such as multiple sclerosis (MS) have become an area of increasing focus. Gray matter myelination is an important marker of cortical microstructure, and its impairment is relevant in progressive MS. However, its assessment is challenging due to its thin layers. While myelin water imaging and ultra-short TE imaging have not yet been implemented to assess cortical myeloarchitecture, magnetization transfer (MT) shows promise. A recent development of the MT technique, ihMT, has demonstrated greater myelin sensitivity/specificity. Here we implemented a 3D ihMT acquisition and analysis to characterize cortical gray matter myeloarchitecture. METHODS: 20 young healthy volunteers were imaged with a 3D ihMTRAGE sequence and quantitative metrics of ihMT (ihMTsat), and dual frequency-offset MT (dual MTsat) were calculated. Cortical surface-based analysis of ihMTsat and dual MTsat were performed and compared. We also compared the cortical ihMTsat map to a cortical surface-based map of T1-weighted images (T1w), defined as a proxy of myelin content. RESULTS: Cortical ihMTsat and dual MTsat maps were in qualitative agreement with previous work and the cortical T1w map, showing higher values in primary cortices and lower values in the insula. IhMTsat and dual MTsat were significantly correlated but with important regional differences. The ratio ihMTsat/dual MTsat highlighted higher ihMTsat values in the primary cortices and sulci. CONCLUSION: ihMTsat, a quantitative metric of ihMT, can be reliably measured in cortical gray matter and shows unique contrast between cortical regions.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Substância Branca/diagnóstico por imagem , Adulto Jovem
14.
Radiology ; 298(2): 332-340, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33258745

RESUMO

Background Tumor perfusion may inform therapeutic response and resistance in metastatic renal cell carcinoma (RCC) treated with antiangiogenic therapy. Purpose To determine if arterial spin labeled (ASL) MRI perfusion changes are associated with tumor response and disease progression in metastatic RCC treated with vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKIs). Materials and Methods In this prospective study (ClinicalTrials.gov identifier: NCT00749320), metastatic RCC perfusion was measured with ASL MRI before and during sunitinib or pazopanib therapy between October 2008 and March 2014. Objective response rate (ORR) and progression-free survival (PFS) were calculated. Perfusion was compared between responders and nonresponders at baseline, at week 2, after cycle 2 (12 weeks), after cycle 4 (24 weeks), and at disease progression and compared with the ORR by using the Wilcoxon rank sum test and with PFS by using the log-rank test. Results Seventeen participants received sunitinib (mean age, 59 years ± 7.0 [standard deviation]; 11 men); 11 participants received pazopanib (mean age, 63 years ± 6.6; eight men). Responders had higher baseline tumor perfusion than nonresponders (mean, 404 mL/100 g/min ± 213 vs 199 mL/100 g/min ± 136; P = .02). Perfusion decreased from baseline to week 2 (-53 mL/100 g/min ± 31; P < .001), after cycle 2 (-65 mL/100 g/min ± 25; P < .001), and after cycle 4 (-79 mL/100 g/min ± 15; P = .008). Interval reduction in perfusion at those three time points was not associated with ORR (P = .63, .29, and .27, respectively) or PFS (P = .28, .27, and .32). Perfusion increased from cycle 4 to disease progression (51% ± 11; P < .001). Conclusion Arterial spin labeled perfusion MRI may assist in identifying responders to vascular endothelial growth factor receptor tyrosine kinase inhibitors and may help detect early evidence of disease progression in patients with metastatic renal cell carcinoma. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Goh and De Vita in this issue.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Sunitinibe/uso terapêutico , Adulto , Idoso , Carcinoma de Células Renais/secundário , Feminino , Humanos , Indazóis , Neoplasias Renais/secundário , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Proteínas Tirosina Quinases/antagonistas & inibidores , Marcadores de Spin
15.
Magn Reson Med ; 85(4): 2136-2144, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33107146

RESUMO

PURPOSE: The recently introduced inhomogeneous magnetization transfer (ihMT) method has predominantly been applied for imaging the central nervous system. Future applications of ihMT, such as in peripheral nerves and muscles, will involve imaging in the vicinity of adipose tissues. This work aims to systematically investigate the partial volume effect of fat on the ihMT signal and to propose an efficient fat-separation method that does not interfere with ihMT measurements. METHODS: First, the influence of fat on ihMT signal was studied using simulations. Next, the ihMT sequence was combined with a multi-echo Dixon acquisition for fat separation. The sequence was tested in 9 healthy volunteers using a 3T human scanner. The ihMT ratio (ihMTR) values were calculated in regions of interest in the brain and the spinal cord using standard acquisition (no fat saturation), water-only, in-phase, and out-of-phase reconstructions. The values obtained were compared with a standard fat suppression method, spectral presaturation with inversion recovery. RESULTS: Simulations showed variations in the ihMTR values in the presence of fat, depending on the TEs used. The IhMTR values in the brain and spinal cord derived from the water-only ihMT multi-echo Dixon images were in good agreement with values from the unsuppressed sequence. The ihMT-spectral presaturation with inversion recovery combination resulted in 24%-35% lower ihMTR values compared with the standard non-fat-suppressed acquisition. CONCLUSION: The presence of fat within a voxel affects the ihMTR calculations. The IhMT multi-echo Dixon method does not compromise the observable ihMT effect and can potentially be used to remove fat influence in ihMT.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Tecido Adiposo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Medula Espinal
16.
Neuroimage ; 223: 117371, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32931943

RESUMO

BACKGROUND: Arterial Spin Labeling (ASL) MRI can provide quantitative images that are sensitive to both time averaged blood flow and its temporal fluctuations. 3D image acquisitions for ASL are desirable because they are more readily compatible with background suppression to reduce noise, can reduce signal loss and distortion, and provide uniform flow sensitivity across the brain. However, single-shot 3D acquisition for maximal temporal resolution typically involves degradation of image quality through blurring or noise amplification by parallel imaging. Here, we report a new approach to accelerate a common stack of spirals 3D image acquisition by pseudo golden-angle rotation and compressed sensing reconstruction without any degradation of time averaged blood flow images. METHODS: 28 healthy volunteers were imaged at 3T with background-suppressed unbalanced pseudo-continuous ASL combined with a pseudo golden-angle Stack-of-Spirals 3D RARE readout. A fully-sampled perfusion-weighted volume was reconstructed by 3D non-uniform Fast Fourier Transform (nuFFT) followed by sum-of-squares combination of the 32 individual channels. Coil sensitivities were estimated followed by reconstruction of the 39 single-shot volumes using an L1-wavelet Compressed-Sensing reconstruction. Finally, brain connectivity analyses were performed in regions where BOLD signal suffers from low signal-to-noise ratio and susceptibility artifacts. RESULTS: Image quality, assessed with a non-reference 3D blurring metric, of full time averaged blood flow was comparable to a conventional interleaved acquisition. The temporal resolution provided by the acceleration enabled identification and quantification of resting-state networks even in inferior regions such as the amygdala and inferior frontal lobes, where susceptibility artifacts can degrade conventional resting-state fMRI acquisitions. CONCLUSION: This approach can provide measures of blood flow modulations and resting-state networks for free within any research or clinical protocol employing ASL for resting blood flow.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Artefatos , Encéfalo/anatomia & histologia , Feminino , Humanos , Masculino , Razão Sinal-Ruído , Marcadores de Spin , Adulto Jovem
17.
Magn Reson Med ; 84(6): 2964-2980, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32602958

RESUMO

PURPOSE: To demonstrate the feasibility of integrating the magnetization transfer (MT) preparations required for inhomogeneous MT (ihMT) within an MPRAGE-style acquisition. Such a sequence allows for reduced power deposition and easy inclusion of other modules. METHODS: An ihMT MPRAGE-style sequence (ihMTRAGE) was initially simulated to investigate acquisition of the 3D ihMT data sequentially, or in an interleaved manner. The ihMTRAGE sequence was implemented on a 3T clinical scanner to acquire ihMT data from the brain and spine. RESULTS: Both simulations and in vivo data provided an ihMT signal that was significantly greater using a sequential ihMTRAGE acquisition, compared with an interleaved implementation. Comparison with a steady-state ihMT acquisition (defined as having one MT RF pulse between successive acquisition modules) demonstrated how ihMTRAGE allows for a reduction in average power deposition, or greater ihMT signal at equal average power deposition. Inclusion of a prospective motion-correction module did not significantly affect the ihMT signal obtained from regions of interest in the brain. The ihMTRAGE acquisition allowed combination with a spatial saturation module to reduce phase wrap artifacts in a cervical spinal cord acquisition. CONCLUSIONS: Use of preparations necessary for ihMT experiments within an MPRAGE-style sequence provides a useful alternative for acquiring 3D ihMT data. Compared with our steady-state implementation, ihMTRAGE provided reduced power deposition, while allowing use of the maximum intensity from off-resonance RF pulses. The 3D ihMTRAGE acquisition allowed combination of other modules with the preparation necessary for ihMT experiments, specifically motion compensation and spatial saturation modules.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Artefatos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional , Estudos Prospectivos
18.
J Magn Reson Imaging ; 51(3): 854-860, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31410924

RESUMO

BACKGROUND: More than 100 million adults in the US suffer from prediabetes or type-2 diabetes. Noninvasive imaging of pancreas endocrine function might provide a surrogate marker of ß-cell functional integrity loss linked to this disease. PURPOSE: To noninvasively assess pancreatic blood-flow modulation following a glucose challenge using arterial spin labeling (ASL) MRI. STUDY TYPE: Prospective. SUBJECTS: Fourteen adults (30 ± 7 years old, 3M/11F, body mass index [BMI] = 24 ± 3 kg.m-2 ). FIELD STRENGTH/SEQUENCE: 3T MRI / background-suppressed pseudocontinuous PCASL preparation with single-shot fast-spin-echo (FSE) readout before and after an oral glucose challenge using either fruit juice (n = 7) or over-the-counter glucose gel (n = 7). ASSESSMENT: Subjects were fasting prior to initiation of oral stimulation, then dynamic perfusion measurements were performed every 2 minutes for 30 minutes. We quantified absolute blood flow at each timepoint. STATISTICAL TESTS: Repeated-measures analysis of variance (ANOVA) followed by paired t-tests to assess for a significant effect of glucose challenge on measured perfusion. RESULTS: Measured basal blood flow was 187 ± 53 mL/100g/min. A significant blood flow increase of +38 ± 26% was observed 10 minutes poststimulation (P < 0.05) and continuing until the end of the experiment. The gel stimulation provided the most consistent results, with an early rise followed by an additional later increase consistent with the known pancreatic insulin response to elevated blood glucose. Across-subject variations in blood flow increase were partially attributable to basal flow, with a negative correlation of r = -0.84 between basal and maximal relative flow increase in the gel group. DATA CONCLUSION: ASL can be used to measure pancreatic flow in response to a glucose challenge, which could be linked to insulin release and secretion. This paradigm might be useful to characterize disorders of glucose regulation. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:854-860.


Assuntos
Glucose , Imageamento por Ressonância Magnética , Pâncreas/diagnóstico por imagem , Perfusão , Estudos Prospectivos , Marcadores de Spin
19.
Bipolar Disord ; 22(4): 401-410, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31630476

RESUMO

OBJECTIVES: We sought to evaluate whether dynamic Arterial Spin Labeling (dASL), a novel quantitative technique robust to artifacts and noise that especially arise in inferior brain regions, could characterize neural substrates of BD pathology and symptoms. METHODS: Forty-five subjects (19 BD patients, 26 controls) were imaged using a dASL sequence. Maps of average perfusion, perfusion fluctuation, and perfusion connectivity with anterior cingulate cortex (ACC) were derived. Patient symptoms were quantified along four symptom dimensions determined using factor analysis of the subjects from the Bipolar and Schizophrenia Network on Intermediate Phenotypes (BSNIP) study. Maps of the perfusion measures were compared between BD patients and controls and correlated with the symptom dimensions in the BD patients only by voxel-level and region-level analyses. RESULTS: BD patients exhibited (i) significantly increased perfusion fluctuations in the left fusiform and inferior temporal regions (P = .020, voxel-level corrected) and marginally increased perfusion fluctuations in the right temporal pole and inferior temporal regions (P = .063, cluster-level corrected), (ii) significantly increased perfusion connectivity between ACC and the occipitoparietal cortex (P = .050, cluster-level corrected). In BD patients, positive symptoms were negatively associated with ACC perfusion connectivity to the right orbitofrontal and superior frontal regions (P = .002, cluster-level corrected) and right orbitofrontal and inferior frontal regions (P = .023, cluster-level corrected). CONCLUSION: The abnormal perfusion fluctuations and connectivity alterations may underlie the mood fluctuations and cognitive and emotional dysregulation that characterize BD.


Assuntos
Transtorno Bipolar/diagnóstico , Encéfalo/irrigação sanguínea , Adulto , Afeto , Mapeamento Encefálico , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/patologia , Feminino , Giro do Cíngulo/irrigação sanguínea , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/patologia
20.
MAGMA ; 33(1): 141-161, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31833014

RESUMO

OBJECTIVES: This study aimed at developing technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5 T and 3 T field strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-centre clinical studies. METHODS: An international panel of 23 renal ASL experts followed a modified Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting. RESULTS: Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or flow-sensitive alternating inversion recovery (FAIR) labelling with a single-slice spin-echo EPI readout with background suppression and a simple but robust quantification model. DISCUSSION: This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data become available, since the renal ASL literature is rapidly expanding.


Assuntos
Circulação Cerebrovascular , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/tendências , Marcadores de Spin , Pesquisa Translacional Biomédica/tendências , Algoritmos , Consenso , Técnica Delphi , Imagem Ecoplanar , Humanos , Processamento de Imagem Assistida por Computador/métodos , Rim/irrigação sanguínea , Transplante de Rim , Angiografia por Ressonância Magnética , Estudos Multicêntricos como Assunto , Perfusão , Artéria Renal/diagnóstico por imagem , Reprodutibilidade dos Testes , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA