Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Fluoresc ; 33(3): 1089-1099, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36574186

RESUMO

In the current research work "4-{[1-(2,5-dihydroxyphenyl)ethylidene]amino}-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one" chemosensor (C1) synthesized by condensation reaction using "4-amino-1,2-dihydro-1,5-dimethyl-2-phenylpyrazol-3-one" and "2,5-dihydroxy actophenone" was used as the effective sensor of metal ion. The C1 shows absorption peak at 326 nm due to the C = C bond (π-π* transition), while the absorption peak at 364 nm is caused by the C = O bond (n-π* transition). In the presence of copper, C1 only demonstrated a redshift in absorption peak from 364 to 425 nm. Even in the presence of other competing metal ions, the hypsochromic shift of the absorption band and the quenching of the fluorescence emission intensity were different for detecting Cu2+, in CH3OH-H2O (v/v = 6:4). The capacity of the C1 to bind with Cu2+ was further proved using DFT simulations. The complex C1 + Cu2+ has a HOMO-LUMO energy gap of 2.8002 eV, which is lesser than C1 (2.9991 eV) showing improvement in the stability of the C1 + Cu2+ complex. Using the Benesi-Hildebrand and Scatchard plots, calculated Kb values were to be 47,340 and 48369 M-1 respectively, showing the creation of stable complexation between Cu2+ and C1 with 1:1 stoichiometry. The limit of detection (LOD) for Cu2+ ion was 649 nM. Strip sheets were also built and tested to detect varying amounts of Cu2+ in aqueous solution, and their color change suggested that they might be used for on-site Cu2+ detection in polluted water.

2.
Molecules ; 27(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35335354

RESUMO

The impact of the charge transfer complex on the dielectric relaxation processes in free poly(methyl methacrylate) (PMMA) polymer sheets was investigated. The frequency dependence of dielectric properties was obtained over the frequency range 0.1 Hz-1 MHz at temperatures ranging between 303 K and 373 K for perylene dye and acceptors (picric acid (PA) and chloranilic acid (CLA)) in an in situ PMMA polymer. The TG/dTG technique was used to investigate the thermal degradation of the synthesized polymeric sheets. Additionally, the kinetic parameters have been assessed using the Coats-Redfern relation. The dielectric relaxation spectroscopy of the synthesized polymeric sheets was analyzed in terms of complex dielectric constant, dielectric loss, electrical modulus, electrical conductivity, and Cole-Cole impedance spectroscopy. α- and ß-relaxation processes were detected and discussed. The σ(ω) dispersion curves of the synthesized polymeric sheets show two distinct regions with increasing frequency. The impedance data of the synthesized polymeric sheets can be represented by the equivalent circuit (parallel RC).

3.
J Fluoresc ; 31(3): 625-634, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33635498

RESUMO

A Schiff-base 2-((E)-(3-(prop-1-en-2-yl)phenylimino)methyl)-4-nitrophenol (Receptor 1) colorimetric probe was synthesized and its UV-visible and fluorescence spectral properties for the sensing of Cu+ 2 ions in CH3OH/H2O (60:40,v/v) solvent system was explored. The Receptor 1 showed the discriminating spectral behavior with the addition of Cu2+ ions solution. The other metal ions showed no significant effect towards Receptor 1. Moreover, the addition of Cu2+ ions to the Receptor 1 demonstrated the shift in the peak towards longer wavelength of 405 nm due to the ligand to metal charge transfer (LMCT) effect. The red-shift and new peak at 405 nm are due to the deprotonation of the -OH group and formation of complex and O-Cu covalent bond, respectively. A slight increase in the Cu2+ ion concentration exhibited strong absorption and fluorescence properties, leading to the spontaneous change in color from pale yellow to orange. Additionally, Density Functional Theory (DFT) studies were performed to investigate the interaction of Cu2+ ions with Receptor 1. The decrease in the energies (3.59062 kcal/mol to 0.36028 kcal/mol) of Cu2+-Receptor-1 complex compared to Receptor 1 confirms the strong interaction with high stability. The association constant (Ka) of Cu2+-Receptor-1 complex was found as 175000 M- 1. The limit of detection (LOD) was calculated and noted as 179 nM.

4.
J Phys Chem A ; 125(28): 6059-6063, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34242026

RESUMO

There has been growing interest in searching for new low-dimensional (low-D) materials for nanoelectronics and energy applications. Most materials have their structural units extended in three dimensions and connected with chemical bonds. When the dimension is reduced, these bonds will be broken, decreasing the stability and making their experimental realization difficult. Here, we show that stable low-D materials can be made from naturally existing planar structural units. This is demonstrated by first-principles study of boron chalcogenides (B-X), which can have various low-D structures with attractive properties. For example, B2O3 can be the thinnest proton-exchange membrane for fuel cells. B-X are wide-gap semiconductors that can complement the narrow-gap 2D metal dichalcogenides for (opto)electronics. Our work sheds light on the stability of low-D materials and suggests guidelines for rational design of new materials.

5.
J Mol Struct ; 1228: 129459, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33082599

RESUMO

COVID-19, the pandemic disease recently discovered in Wuhan (China), severely spread and affected both social and economic activity all over the world. Attempts to find an effective vaccine are challenging, time-consuming though interminable. Hence, re-proposing effective drugs is reliable and effective alternative. Taking into account the genome similarity of COVID-19 with SARS-CoV, drugs with safety profiles could be fast solution. Clinical trials encouraged the use of Chloroquine and Hydroxychloroquine for COVID-19 inhibition. One of the possible inhibition pathways is the competitive binding with the angiotension-converting enzyme-2 (ACE-2), in particular with the cellular Sialic acid (Neu5Ac). Here, we investigate the possible binding mechanism of ClQ and ClQOH with sialic acid both in the gas phase and in water using density functional theory (DFT). We investigated the binding of the neutral, monoprotonated and diprotonated ClQs and ClQOHs to sialic acid to simulate the pH effect on the cellular receptor binding. DFT results reveals that monoprotonated ClQ+ and ClQOH+, which account for more than 66% in the solution, possess high reactivity and binding towards sialic acid. The Neu5Ac-ClQ and the analogues Neu5Ac-ClQOH adducts were stabilized in water than in the gas phase. The molecular complexes stabilize by strong hydrogen bonding and π - π stacking forces. In addition, proton-transfer in Neu5Ac-ClQOH+ provides more stabilizing power and cellular recognition binding forces. These results shed light on possible recognition mechanism and help future breakthroughs for COVID-19 inhibitors.

6.
Water Sci Technol ; 83(7): 1714-1727, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33843754

RESUMO

Size-controlled Pb0.06Fe0.7O3 nanoparticles (Pb-FeONPs) were fabricated by the thermal co-precipitation method and characterized by FE-SEM, EDX, XRD, and IR techniques. The SEM and XRD images showed the average size distribution and average crystallite size of 19.21 nm and 4.9 nm, respectively. The kinetic model of Congo Red (CR) adsorption onto Pb-FeONPs was verified and found to be a pseudo-second-order reaction. The Langmuir plot was better fitted (R2 = 0.990) than other isotherm models with a Qmax (mg/g) of 500 for Congo Red (CR) dye in 40 min. The double-layer statistical physics model based on two energies was used to calculate the significant parameters. The n (stoichiometric coefficient) values obtained from the statistical physics double-layer model were found to be 0.599, 0.593, and 0.565, which are less than 1, indicating the multi-docking process. The regeneration of Pb-FeONPs was used for up to 5 cycles effectively, making the material highly economical. The Pb-FeONPs were fruitfully applied for the removal of CR dye from wastewater on a laboratory and industrial scale.


Assuntos
Vermelho Congo , Poluentes Químicos da Água , Adsorção , Vermelho Congo/análise , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Física
7.
J Mol Liq ; 340: 117224, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34393305

RESUMO

Finding a cure or vaccine for the coronavirus disease (COVID-19) is the most pressing issue facing the world in 2020 and 2021. One of the more promising current treatment protocols is based on the antibiotic azithromycin (AZM) alone or in combination with other drugs (e.g., chloroquine, hydroxychloroquine). We believe gaining new insight into the charge-transfer (CT) chemistry of this antibiotic will help researchers and physicians alike to improve these treatment protocols. Therefore, in this work, we examine the CT interaction between AZM (donor) and tetracyanoethylene (TCNE, acceptor) in either solid or liquid forms. We found that, for both phases of starting materials, AZM reacted strongly with TCNE to produce a colored, stable complex with 1:2 AZM to TCNE stoichiometry via a n → π* transition (AZM → TCNE). Even though both methodologies yielded the same product, we recommend the solid-solid interaction since it is more straightforward, environmentally friendly, and cost- and time-effective.

8.
Materials (Basel) ; 17(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38730773

RESUMO

Two-dimensional superconductors, especially the covalent metals such as borophene, have received significant attention due to their new fundamental physics, as well as potential applications. Furthermore, the bilayer borophene has recently ignited interest due to its high stability and versatile properties. Here, the mechanical and superconducting properties of bilayer-δ6 borophene are explored by means of first-principles computations and anisotropic Migdal-Eliashberg analytics. We find that the coexistence of strong covalent bonds and delocalized metallic bonds endows this structure with remarkable mechanical properties (maximum 2D-Young's modulus of ~570 N/m) and superconductivity with a critical temperature of ~20 K. Moreover, the superconducting critical temperature of this structure can be further boosted to ~46 K by applied strain, which is the highest value known among all borophenes or two-dimensional elemental materials.

9.
Int J Biol Macromol ; 279(Pt 2): 135211, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39216567

RESUMO

Immobilization of enzymes on suitable supports is a critical approach for enhancing enzyme stability, reusability, and overall catalytic efficiency. This study explores the immobilization of Candida rugosa lipase on zirconium-based 2-methylimidazole (ZrMI) nanoparticles, aiming to develop a stable and reusable biocatalyst. The ZrMI was produced via a solvothermal technique and analyzed using various characterization methods. Candida rugose lipase was immobilized using cross-linking agents, achieving an 87 % immobilization efficiency. The immobilized enzyme exhibited significantly enhanced thermal stability, broader pH tolerance, and increased catalytic efficiency compared to free C. rugose lipase. The ZrMI@lipase retained 69 % of its enzymatic activity following a 60-day storage period at 4 °C. Notably, it displayed significant reusability, maintaining 65 % of its original activity after undergoing 15 catalytic cycles. Examination of the kinetics revealed that the immobilized enzyme possessed a heightened substrate affinity (Km of 4.1 mM) and maximal reaction rate (Vmax of 85.7 µmol/ml/min) in comparison to the free enzyme (Km of 5.4 mM and Vmax of 69 µmol/ml/min), indicating enhanced catalytic efficiency. Validation through zeta potential and hydrodynamic size assessments verified the successful binding of the enzyme and the consistent colloidal characteristics. These results suggest that ZrMI is a promising support for C. rugose lipase immobilization, offering improved stability and reusability for various industrial applications. The study highlights the potential of ZrMI@lipase as an efficient and durable biocatalyst, contributing to advancements in enzyme immobilization technology and sustainable industrial processes.


Assuntos
Biocatálise , Estabilidade Enzimática , Enzimas Imobilizadas , Imidazóis , Lipase , Zircônio , Lipase/química , Lipase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Zircônio/química , Imidazóis/química , Cinética , Concentração de Íons de Hidrogênio , Temperatura , Saccharomycetales/enzimologia , Candida/enzimologia
10.
Chemosphere ; 353: 141571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423148

RESUMO

The treatment of various organic pollutants from industrial wastewater using bio-based materials has gained significant attention owing to their excellent properties such as low-cost, eco-friendly, non-toxic, and biodegradability. In this perspective, casein (Cn), a protein-based biopolymer, was extracted from the cow milk as a low-cost adsorbent, and the adsorption performances were determined for the pristine Cn. The adsorbent was employed for the removal of two different classes of targeted pollutant anionic dyes such as Congo red (CR), Eriochrome Black T (EBT), Eosin Y (EY), and pharmaceutical waste i.e., diclofenac sodium (DS) and displayed better adsorption performances with the maximum adsorption capacity of 85.54, 31.72, 70.42 and 358.42 mg g-1 respectively. The interactions between Cn and pollutants are mainly ascribed to the electrostatic interaction, hydrogen bonding, hydrophobic interaction, and π-π interactions. Furthermore, to validate with realistic application the adsorbent proved with an excellent removal efficiency of 91.43% for fabric whitener i.e., Ujala Supreme®. These obtained results suggest that the Cn could be the potential adsorbent to effectively eliminate toxic pollutants from the aqueous solutions.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Corantes/análise , Diclofenaco , Caseínas , Adsorção , Biopolímeros , Água , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio
11.
Sci Rep ; 14(1): 12788, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834596

RESUMO

Most modern catalysts are based on precious metals and rear-earth elements, making some of organic synthesis reactions economically insolvent. Density functional theory calculations are used here to describe several differently oriented surfaces of the higher tungsten boride WB5-x, together with their catalytic activity for the CO oxidation reaction. Based on our findings, WB5-x appears to be an efficient alternative catalyst for CO oxidation. Calculated surface energies allow the use of the Wulff construction to determine the equilibrium shape of WB5-x particles. It is found that the (010) and (101) facets terminated by boron and tungsten, respectively, are the most exposed surfaces for which the adsorption of different gaseous agents (CO, CO2, H2, N2, O2, NO, NO2, H2O, NH3, SO2) is evaluated to reveal promising prospects for applications. CO oxidation on B-rich (010) and W-rich (101) surfaces is further investigated by analyzing the charge redistribution during the adsorption of CO and O2 molecules. It is found that CO oxidation has relatively low energy barriers. The implications of the present results, the effects of WB5-x on CO oxidation and potential application in the automotive, chemical, and mining industries are discussed.

12.
ACS Nano ; 17(5): 5121-5128, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36853621

RESUMO

Well recognized mechanical flexibility of two-dimensional (2D) materials is shown to bring about unexpected behaviors to the recently discovered monolayer ferroelectrics, especially those displaying normal, off-plane polarization. A "ferro-flexo" coupling term is introduced into the energy expression, to account for the connection of ferroelectricity and bending (strain gradient) of the layer, to predict and quantify its spontaneous curvature and how it affects the phase transitions. With InP as a chemically specific representative example, the first-principles calculations indeed reveal strong coupling ∼P·Ï° between the ferroelectric polarization (P) and the curvature of the layer (Ï° ≡ 1/r), having profound consequences for both mechanics and ferroelectricity of the material. Due to flexural relaxation, the spontaneous polarization and the transition barrier rise significantly, leading to large changes in the Curie temperature, coercive field, and domain wall width and energy, based on Monte Carlo simulations. On the other hand, the polarization switching, characteristic to ferroelectrics, does induce an overall layer bending, enabling a conversion of electrical signal to movement as an actuator; its possible work-cycles and maximum work-efficiency are briefly discussed.

13.
J Phys Chem Lett ; 14(40): 9118-9125, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37793092

RESUMO

We propose the Zn2V(1-x)NbxN3 alloy as a new promising material for optoelectronic applications, in particular for light-emitting diodes (LEDs). We perform accurate electronic-structure calculations of the alloy for several concentrations x using density-functional theory with meta-GGA exchange-correlation functional TB09. The band gap is found to vary between 2.2 and 2.9 eV with varying V/Nb concentration. This range is suitable for developing bright LEDs with tunable band gap as potential replacements for the more expensive Ga(1-x)In(x)N systems. Effects of configurational disorder are taken into account by explicitly considering all possible distributions of the metal ions within the metal sublattice for the chosen supercells. We have evaluated the band gap's nonlinear behavior (bowing) with variation of V/Nb concentration for two possible scenarios: (i) only the structure with the lowest total energy is present at each concentration and (ii) the structure with minimum band gap is present at each concentration, which corresponds to experimental conditions when also metastable structures are presents. We found that the bowing is about twice larger in the latter case. However, in both cases, the bowing parameter is found to be lower than 1 eV, which is about twice smaller than that in the widely used Ga(1-x)In(x)N alloy. Furthermore, we found that both crystal volume changes due to alloying and local effects (atomic relaxation and the V-N/Nb-N bonding difference) have important contributions to the band gap bowing in Zn2V(1-x)NbxN3.

14.
ACS Appl Mater Interfaces ; 15(12): 16317-16326, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926821

RESUMO

Ultrathin diamond films, or diamanes, are promising quasi-2D materials that are characterized by high stiffness, extreme wear resistance, high thermal conductivity, and chemical stability. Surface functionalization of multilayer graphene with different stackings of layers could be an interesting opportunity to induce proper electronic properties into diamanes. Combination of these electronic properties together with extraordinary mechanical ones will lead to their applications as field-emission displays substituting original devices with light-emitting diodes or organic light-emitting diodes. In the present study, we focus on the electronic properties of fluorinated and hydrogenated diamanes with (111), (110), (0001), (101̅0), and (2̅110) crystallographic orientations of surfaces of various thicknesses by using first-principles calculations and Bader analysis of electron density. We see that fluorine induces an occupied surface electronic state, while hydrogen modifies the occupied bulk state and also induces unoccupied surface states. Furthermore, a lower number of layers is necessary for hydrogenated diamanes to achieve the convergence of the work function in comparison with fluorinated diamanes, with the exception of fluorinated (110) and (2̅110) films that achieve rapid convergence and have the same behavior as other hydrogenated surfaces. This induces a modification of the work function with an increase of the number of layers that makes hydrogenated (2̅110) diamanes the most suitable surface for field-emission displays, better than the fluorinated counterparts. In addition, a quasi-quantitative descriptor of surface dipole moment based on the Tantardini-Oganov electronegativity scale is introduced as the average of bond dipole moments between the surface atoms. This new fundamental descriptor is capable of predicting a priori the bond dipole moment and may be considered as a new useful feature for crystal structure prediction based on artificial intelligence.

15.
Biofabrication ; 15(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36595260

RESUMO

Spray nebulization is an elegant, but relatively unstudied, technique for scaffold production. Herein we fabricated mesh scaffolds of polycaprolactone (PCL) nanofibers via spray nebulization of 8% PCL in dichloromethane (DCM) using a 55.2 kPa compressed air stream and 17 ml h-1polymer solution flow rate. Using a refined protocol, we tested the hypothesis that spray nebulization would simultaneously generate nanofibers and eliminate solvent, yielding a benign environment at the point of fiber deposition that enabled the direct deposition of nanofibers onto cell monolayers. Nanofibers were collected onto a rotating plate 20 cm from the spray nozzle, but could be collected onto any static or moving surface. Scaffolds exhibited a mean nanofiber diameter of 910 ± 190 nm, ultimate tensile strength of 2.1 ± 0.3 MPa, elastic modulus of 3.3 ± 0.4 MPa, and failure strain of 62 ± 6%.In vitro, scaffolds supported growth of human keratinocyte cell epithelial-like layers, consistent with potential utility as a dermal scaffold. Fourier-transform infrared spectroscopy demonstrated that DCM had vaporized and was undetectable in scaffolds immediately following production. Exploiting the rapid elimination of DCM during fiber production, we demonstrated that nanofibers could be directly deposited on to cell monolayers, without compromising cell viability. This is the first description of spray nebulization generating nanofibers using PCL in DCM. Using this method, it is possible to rapidly produce nanofiber scaffolds, without need for high temperatures or voltages, yielding a method that could potentially be used to deposit nanofibers onto cell cultures or wound sites.


Assuntos
Nanofibras , Humanos , Nanofibras/química , Alicerces Teciduais/química , Poliésteres/química , Polímeros , Engenharia Tecidual/métodos
16.
Bioact Mater ; 24: 535-550, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36714332

RESUMO

Biomaterials have ushered the field of tissue engineering and regeneration into a new era with the development of advanced composites. Among these, the composites of inorganic materials with organic polymers present unique structural and biochemical properties equivalent to naturally occurring hybrid systems such as bones, and thus are highly desired. The last decade has witnessed a steady increase in research on such systems with the focus being on mimicking the peculiar properties of inorganic/organic combination composites in nature. In this review, we discuss the recent progress on the use of inorganic particle/polymer composites for tissue engineering and regenerative medicine. We have elaborated the advantages of inorganic particle/polymer composites over their organic particle-based composite counterparts. As the inorganic particles play a crucial role in defining the features and regenerative capacity of such composites, the review puts a special emphasis on the various types of inorganic particles used in inorganic particle/polymer composites. The inorganic particles that are covered in this review are categorised into two broad types (1) solid (e.g., calcium phosphate, hydroxyapatite, etc.) and (2) porous particles (e.g., mesoporous silica, porous silicon etc.), which are elaborated in detail with recent examples. The review also covers other new types of inorganic material (e.g., 2D inorganic materials, clays, etc.) based polymer composites for tissue engineering applications. Lastly, we provide our expert analysis and opinion of the field focusing on the limitations of the currently used inorganic/organic combination composites and the immense potential of new generation of composites that are in development.

17.
ACS Nano ; 16(10): 16736-16743, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36198132

RESUMO

Carbon and hydrogen bonding constitute the backbone of life; in the form of graphene, possibly functionalized by DNA nucleobases, these hold promise for the programmable assembly of graphene-based nanoelectronic devices. It is still unknown how hydrogen-bonded junctions inherent in such devices will perform as electron transport media. Here, we design nucleobase-bonded graphene nanoribbons and quantify their quantum transport characteristics using first-principles calculations. Pronounced rectifying behavior and negative differential resistance are found, as well as high conductance of certain structures, with the guanine-cytosine junction in general being superior to the adenine-thymine junction. The identified sensitivity of the conductance to atomic details of the interfaces offers initial hints and guidance for experimental realization. The dependence of current on electrostatic gate doping, with an on/off ratio of ∼102, shows the potential of the junction as a field effect transistor.


Assuntos
Grafite , Nanotubos de Carbono , Nanotubos de Carbono/química , Grafite/química , Timina , Transporte de Elétrons , Citosina , Guanina , DNA/química , Adenina , Hidrogênio
18.
ACS Biomater Sci Eng ; 8(10): 4039-4076, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34499471

RESUMO

Biomaterials have been widely used in tissue engineering applications at an increasing rate in recent years. The increased clinical demand for safe scaffolds, as well as the diversity and availability of biomaterials, has sparked rapid interest in fabricating diverse scaffolds to make significant progress in tissue engineering. Hydroxyapatite (HAP) has drawn substantial attention in recent years owing to its excellent physical, chemical, and biological properties and facile adaptable surface functionalization with other innumerable essential materials. This focused review spotlights a brief introduction on HAP, scope, a historical outline, basic structural features/properties, various synthetic strategies, and their scientific applications concentrating on functionalized HAP in the diverse area of tissue engineering fields such as bone, skin, periodontal, bone tissue fixation, cartilage, blood vessel, liver, tendon/ligament, and corneal are emphasized. Besides clinical translation aspects, the future challenges and prospects of HAP based biomaterials involved in tissue engineering are also discussed. Furthermore, it is expected that researchers may find this review expedient in gaining an overall understanding of the latest advancement of HAP based biomaterials.


Assuntos
Durapatita , Engenharia Tecidual , Materiais Biocompatíveis/uso terapêutico , Durapatita/química , Durapatita/farmacologia , Porosidade , Alicerces Teciduais/química
19.
Nanoscale Adv ; 4(5): 1408-1413, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36133675

RESUMO

Two-dimensional metals offer intriguing possibilities to explore the metallic and other related properties in systems with reduced dimensionality. Here, following recent experimental reports of synthesis of two-dimensional metallic gallium (gallenene) on insulating substrates, we conduct a computational search of gallenene structures using the Particle Swarm Optimization algorithm, and identify stable low energy structures. Our calculations of the critical temperature for conventional superconductivity yield values of ∼7 K for gallenene. We also emulate the presence of the substrate by introducing the external confining potential and test its effect on the structures with unstable phonons.

20.
Chemosphere ; 287(Pt 1): 131976, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34438207

RESUMO

Herein, low-cost diatomite (DE) and bentonite (BE) materials were surface modified with Ni-Fe layered double hydroxide (LDHs) (represented as NFD and NFB respectively), using a simple co-precipitation procedure for the removal of methyl orange (MO) dye from water. The adsorbents of both before and after MO adsorption have been studied by XRD, N2 adsorption-desorption isotherm, FTIR, FESEM-EDX and XPS characterization. The zeta potential analysis was used to observe the surface charge of adsorbents within the pH ranges of 4-10. The MO removal efficiency was significantly improved after LDHs modification, showing a 94.7% and 92.6% efficiency for NFD and NFB at pH 6, respectively. Whereas bare DE and BE have shown removal efficiency of 15.5% and 4.9% respectively. The maximum adsorption capacities of NFD and NFB using the Langmuir isotherm model were found to be 246.9 mgg-1 and 215.9 mgg-1 respectively. The designed NFD showed high selectivity towards anionic-based dyes from water and also the effect of salts shows the dye removal percentage was increased and decreased for the addition of Na2SO4 and NaCl, respectively. The reusability of NFD and NFB have been studied for a maximum of five cycles and they can remove MO up to four cycles. Therefore, the designed adsorbents can be very effective towards the removal of MO from water and they may be useful for dye-based wastewater treatment.


Assuntos
Dióxido de Silício , Poluentes Químicos da Água , Adsorção , Compostos Azo , Hidróxidos , Cinética , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA