Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(7): 1986-2002.e26, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33333022

RESUMO

Serotonin plays a central role in cognition and is the target of most pharmaceuticals for psychiatric disorders. Existing drugs have limited efficacy; creation of improved versions will require better understanding of serotonergic circuitry, which has been hampered by our inability to monitor serotonin release and transport with high spatial and temporal resolution. We developed and applied a binding-pocket redesign strategy, guided by machine learning, to create a high-performance, soluble, fluorescent serotonin sensor (iSeroSnFR), enabling optical detection of millisecond-scale serotonin transients. We demonstrate that iSeroSnFR can be used to detect serotonin release in freely behaving mice during fear conditioning, social interaction, and sleep/wake transitions. We also developed a robust assay of serotonin transporter function and modulation by drugs. We expect that both machine-learning-guided binding-pocket redesign and iSeroSnFR will have broad utility for the development of other sensors and in vitro and in vivo serotonin detection, respectively.


Assuntos
Evolução Molecular Direcionada , Aprendizado de Máquina , Serotonina/metabolismo , Algoritmos , Sequência de Aminoácidos , Tonsila do Cerebelo/fisiologia , Animais , Comportamento Animal , Sítios de Ligação , Encéfalo/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Lineares , Camundongos , Camundongos Endogâmicos C57BL , Fótons , Ligação Proteica , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sono/fisiologia , Vigília/fisiologia
2.
Front Immunol ; 12: 730825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759919

RESUMO

Engineered variants of recombinant adeno-associated viruses (rAAVs) are being developed rapidly to meet the need for gene-therapy delivery vehicles with particular cell-type and tissue tropisms. While high-throughput AAV engineering and selection methods have generated numerous variants, subsequent tropism and response characterization have remained low throughput and lack resolution across the many relevant cell and tissue types. To fully leverage the output of these large screening paradigms across multiple targets, we have developed an experimental and computational single-cell RNA sequencing (scRNA-seq) pipeline for in vivo characterization of barcoded rAAV pools at high resolution. Using this platform, we have both corroborated previously reported viral tropisms and discovered unidentified AAV capsid targeting biases. As expected, we observed that the tropism profile of AAV.CAP-B10 in mice was shifted toward neurons and away from astrocytes when compared with AAV-PHP.eB. Transcriptomic analysis revealed that this neuronal bias is due mainly to increased targeting efficiency for glutamatergic neurons, which we confirmed by RNA fluorescence in situ hybridization. We further uncovered cell subtype tropisms of AAV variants in vascular and glial cells, such as low transduction of pericytes and Myoc+ astrocytes. Additionally, we have observed cell-type-specific transitory responses to systemic AAV-PHP.eB administration, such as upregulation of genes involved in p53 signaling in endothelial cells three days post-injection, which return to control levels by day twenty-five. The presented experimental and computational approaches for parallel characterization of AAV tropism will facilitate the advancement of safe and precise gene delivery vehicles, and showcase the power of understanding responses to gene therapies at the single-cell level.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , RNA-Seq , Análise de Célula Única , Transcrição Gênica , Tropismo Viral , Animais , Astrócitos/metabolismo , Astrócitos/virologia , Bases de Dados Genéticas , Dependovirus/metabolismo , Engenharia Genética , Vetores Genéticos/metabolismo , Interações Hospedeiro-Patógeno , Hibridização in Situ Fluorescente , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/virologia , Estudo de Prova de Conceito , Transdução Genética
3.
Neuron ; 103(4): 686-701.e8, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31248729

RESUMO

The role of serotonin (5-HT) in sleep is controversial: early studies suggested a sleep-promoting role, but eventually the paradigm shifted toward a wake-promoting function for the serotonergic raphe. Here, we provide evidence from zebrafish and mice that the raphe are critical for the initiation and maintenance of sleep. In zebrafish, genetic ablation of 5-HT production by the raphe reduces sleep, sleep depth, and the homeostatic response to sleep deprivation. Pharmacological inhibition or ablation of the raphe reduces sleep, while optogenetic stimulation increases sleep. Similarly, in mice, ablation of the raphe increases wakefulness and impairs the homeostatic response to sleep deprivation, whereas tonic optogenetic stimulation at a rate similar to baseline activity induces sleep. Interestingly, burst optogenetic stimulation induces wakefulness in accordance with previously described burst activity of the raphe during arousing stimuli. These results indicate that the serotonergic system promotes sleep in both diurnal zebrafish and nocturnal rodents. VIDEO ABSTRACT.


Assuntos
Camundongos/fisiologia , Núcleos da Rafe/fisiologia , Serotonina/fisiologia , Sono/fisiologia , Peixe-Zebra/fisiologia , Animais , Nível de Alerta/genética , Nível de Alerta/fisiologia , Buspirona/farmacologia , Ritmo Circadiano/fisiologia , Fenclonina/farmacologia , Homeostase , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Quipazina/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/fisiologia , Serotonina/biossíntese , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Privação do Sono/genética , Privação do Sono/fisiopatologia , Triptofano Hidroxilase/deficiência , Triptofano Hidroxilase/genética , Vigília/genética , Vigília/fisiologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
4.
Elife ; 62017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28990925

RESUMO

Axons are neuronal processes specialized for conduction of action potentials (APs). The timing and temporal precision of APs when they reach each of the synapses are fundamentally important for information processing in the brain. Due to small diameters of axons, direct recording of single AP transmission is challenging. Consequently, most knowledge about axonal conductance derives from modeling studies or indirect measurements. We demonstrate a method to noninvasively and directly record individual APs propagating along millimeter-length axonal arbors in cortical cultures with hundreds of microelectrodes at microsecond temporal resolution. We find that cortical axons conduct single APs with high temporal precision (~100 µs arrival time jitter per mm length) and reliability: in more than 8,000,000 recorded APs, we did not observe any conduction or branch-point failures. Upon high-frequency stimulation at 100 Hz, successive became slower, and their arrival time precision decreased by 20% and 12% for the 100th AP, respectively.


Assuntos
Potenciais de Ação , Neurônios/fisiologia , Animais , Células Cultivadas , Microscopia Intravital , Microeletrodos , Ratos Wistar
5.
Sci Rep ; 6: 31332, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510732

RESUMO

A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs.


Assuntos
Potenciais de Ação , Neocórtex/fisiologia , Neurônios/fisiologia , Animais , Axônios/fisiologia , Potenciais da Membrana , Microeletrodos , Imagem Óptica , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA