Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Toxicol Mech Methods ; 34(5): 596-605, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38375806

RESUMO

Target lipid model (TLM) and toxic unit (TU) approaches were applied to ecotoxicity and chemistry data from low-energy WAFs (LE-WAFs) of source and weathered crude oils originating from the Deepwater Horizon oil spill. The weathered oils included artificially weathered oils and naturally weathered samples collected in the Gulf of Mexico after the spill. Oil weathering greatly reduced the concentrations of identified LE-WAF components, however, the mass of uncharacterized polar material (UPC) in the LE-WAFs remained largely unchanged during the weathering process. While the TLM-derived calculations displayed a significant decrease in toxicity (TUs) for the heavily weathered oils, copepod toxicity, expressed as LC10-based TUs, were comparable between LE-WAFs of fresh and weathered oils. The discrepancy between observed and predicted toxicity for the LE-WAFs of artificially weathered oils may be related to limitations by the chemical analyses or increased toxicity due to generation of new unknown compounds during the weathering process.


Assuntos
Copépodes , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluição por Petróleo/análise , Petróleo/toxicidade , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Copépodes/efeitos dos fármacos , Golfo do México , Tempo (Meteorologia) , Dose Letal Mediana
2.
Toxicol Mech Methods ; 34(3): 245-255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38375852

RESUMO

Crude oil spilled at sea is chemically altered through environmental processes such as dissolution, biodegradation, and photodegradation. Transformation of hydrocarbons to oxygenated species increases water-solubility. Metabolites and oxidation products largely remain uncharacterized by common analytical methods but may be more bioavailable to aquatic organisms. Studies have shown that unresolved (i.e. unidentified) polar compounds ('UPCs') may constitute > 90% of the water-accommodated fraction (WAF) of heavily weathered crude oils, but still there is a paucity of information characterizing their toxicological significance in relation to other oil-derived toxicants. In this study, low-energy WAFs (no droplets) were generated from two field-weathered oils (collected during the 2010 Deepwater Horizon incident) and their polar fractions were isolated through fractionation. To allow establishment of thresholds for acute toxicity (LC50) of the dissolved and polar fraction of field collected oils, we concentrated both WAFs and polar fractions to beyond field-documented concentrations, and the acute toxicity of both to the marine copepod Acartia tonsa was measured and compared to the toxicity of the native WAF (non-concentrated). The difference in toxic units (TUs) between the total of the mixture and of identified compounds of known toxicity (polycyclic aromatic hydrocarbons [PAHs] and alkyl phenols) in both WAF and polar fractions was used to estimate the contribution of the UPC to overall toxicity. This approach identified that UPC had a similar contribution to toxicity as identified compounds within the WAFs of the field-weathered oils. This signifies the relative importance of polar compounds when assessing environmental impacts of spilled and weathered oil.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluição por Petróleo/análise , Poluentes Químicos da Água/toxicidade , Óleos , Petróleo/toxicidade , Petróleo/análise , Água , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
3.
J Toxicol Environ Health A ; : 1-18, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870159

RESUMO

Accidental crude oil spills to the marine environment cause dispersion of oil into the water column through the actions of breaking waves, a process that can be facilitated using chemical dispersants. Oil dispersions contain dispersed micron-sized oil droplets and dissolved oil components, and the toxicity of oil dispersions has been assumed to be associated primarily with the latter. However, most hydrophobic, bioaccumulative and toxic crude oil components are retained within the droplets which may interact with marine filter-feeders. We here summarize the findings of 15 years of research using a unique methodology to generate controlled concentrations and droplet size distributions of dispersed crude oil to study effects on the filter-feeding cold-water copepod Calanus finmarchicus. We focus primarily on the contribution of chemical dispersants and micron-sized oil droplets to uptake and toxicity of oil compounds. Oil dispersion exposures cause PAH uptake and oil droplet accumulation on copepod body surfaces and inside their gastrointestinal tract, and exposures to high exposure (mg/L range) reduce feeding activity, causes reproductive impairments and mortality. These effects were slightly higher in the presence of chemical dispersants, possibly due to higher filtration of chemically dispersed droplets. For C. finmarchicus, dispersions containing oil droplets caused more severe toxic effects than filtered dispersions, thus, oil droplets contribute to the observed toxicity. The methodology for generating crude oil dispersion is a valuable tool to isolate impacts of crude oil microdroplets and can facilitate future research on oil dispersion toxicity and produce data to improve oil spill models.

4.
J Toxicol Environ Health A ; : 1-9, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902244

RESUMO

The demand for mineral resources is increasing mining activities worldwide. In Norway, marine tailing disposal (MTD) is practiced, introducing mineral particles into fjord ecosystems. We investigated the effects of two concentrations (high and low) of fine tailings from a CaCO3 processing plant on early life stages of the marine copepod Calanus finmarchicus. Results show that the exposure did not significantly impact hatching success or development in non- and early feeding life stages. However, feeding stage nauplii ingested tailings, which caused a significantly slower development in later nauplii stages in high exposure groups, with most individuals being two stages behind the control group. Further, high mortality occurred in late nauplii and early copepodite stages in low exposure groups, which could be caused by insufficient energy accumulation and depleted energy reserves during development. Individuals exposed to high exposure concentrations seemed to survive by arresting development and potentially by reduced activity, thereby conserving energy reserves. In nature, slower development could affect lipid storage buildup and reproduction.

5.
Ecotoxicol Environ Saf ; 229: 113100, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923326

RESUMO

During sub-sea oil spills to the marine environment, oil droplets will rise towards the sea surface at a rate determined by their density and diameter as well as the vertical turbulence in the water. Micro-droplets (< 50 µm) are expected to have prolonged residence times in the water column. If present, pelagic fish eggs may thus be exposed to dispersed oil from subsurface oil spills for days, and the contribution of these micro-droplets to toxicity is not well known. The purpose of this work was to investigate to what extent timing of exposure and the presence of oil micro droplets affects PAH uptake and survival of pelagic Atlantic cod eggs. A single batch of eggs was separated in two groups and exposed to dispersions and corresponding water-soluble fraction at 3-7 days (Early exposure) and 9-13 days (Late exposure) post fertilization. Partitioning of PAHs between crude oil microdroplets, water and eggs was estimated as well as the contribution of oil droplets to PAH body residue and acute and delayed mortality. Timing of oil exposure clearly affects both the mortality rate and the timing of mortality. Even though the body residue of PAHs were lower when embryos were exposed in the later embryonic stage, mortality rate increased relative to the early exposure indicating that critical body residue threshold is stage specific. Although our results suggest that the dissolved fraction is the dominating driver for toxicity in cod embryos exposed to oil dispersions, crude oil micro droplets contribute to increased mortality as well.


Assuntos
Gadus morhua , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Petróleo/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade
6.
Environ Sci Technol ; 53(12): 7075-7082, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31125216

RESUMO

Microplastic debris is a pervasive environmental contaminant that has the potential to impact the health of biota, although its modes of action remain somewhat unclear. The current study tested the hypothesis that exposure to fibrous and particulate microplastics would alter feeding, impacting on lipid accumulation, and normal development (e.g., growth, moulting) in an ecologically important coldwater copepod Calanus finmarchicus. Preadult copepods were incubated in seawater containing a mixed assemblage of cultured microalgae (control), with the addition of ∼50 microplastics mL-1 of nylon microplastic granules (10-30 µm) or fibers (10 × 30 µm), which are similar in shape and size to the microalgal prey. The additive chemical profiles showed the presence of stabilizers, lubricants, monomer residues, and byproducts. Prey selectivity was significantly altered in copepods exposed to nylon fibers (ANOVA, P < 0.01) resulting in a nonsignificant 40% decrease in algal ingestion rates (ANOVA, P = 0.07), and copepods exposed to nylon granules showed nonsignificant lipid accumulation (ANOVA, P = 0.62). Both microplastics triggered premature moulting in juvenile copepods (Bernoulli GLM, P < 0.01). Our results emphasize that the shape and chemical profile of a microplastic can influence its bioavailability and toxicity, drawing attention to the importance of using environmentally relevant microplastics and chemically profiling plastics used in toxicity testing.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Lipídeos , Muda , Nylons , Plásticos , Zooplâncton
7.
Environ Sci Technol ; 52(7): 4358-4366, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29514001

RESUMO

Microbial degradation following oil spills results in metabolites from the original oil. Metabolites are expected to display lower bioaccumulation potential and acute toxicity to marine organisms due to microbial-facilitated incorporation of chemical functional groups and a general decrease in lipophilicity. The toxicity and characterization of metabolites are poorly studied. The purpose of the present work was to evaluate the toxicity of degraded (0-21 days) water-soluble oil components. Low-energy water accommodated fraction (LE-WAF) of a weathered crude oil was prepared with nutrient amended seawater at 5 °C, kept in the dark, and sampled at 0, 10, 14, and 21 days. Samples were extracted with dichloromethane and toxicity experiments were conducted with reconstituted extracts. Toxicity experiments were conducted for 4 days on developing cod ( Gadus morhua) embryos during a critical period of their heart development. After exposure, embryos were kept in clean seawater and observed until 5 days post hatch. Survival, hatching, morphometric aberrations, and cardiac function was studied. The expected decrease in sublethal toxicity during the biodegradation period was not found, indicating that metabolites formed during biodegradation likely contributed to larvae toxicity.


Assuntos
Petróleo , Poluentes Químicos da Água , Animais , Biodegradação Ambiental , Peixes , Água
8.
Environ Sci Technol ; 52(24): 14436-14444, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30481011

RESUMO

The impact of oil microdroplets on the partitioning of polycyclic aromatic hydrocarbons (PAHs) between water and marine zooplankton was evaluated. The experimental approach allowed direct comparison of crude oil dispersions (containing both micro-oil droplets and water-soluble fraction; WSF) with the corresponding WSF (without oil droplets). Dispersion concentration and oil type have an impact on the PAH composition of WSFs and therefore affect dispersion bioavailability. Higher T-PAH body residues were observed in copepods treated with dispersions compared to the corresponding WSFs. PAHs with log Kow 3-4.5 displayed comparable accumulation factors between treatments; however, accumulation factors for less soluble PAHs (log Kow = 4.5-6) were higher for the WSF than for the dispersions, suggesting low bioavailability for components contained in oil droplets. The higher PAH body residue in dispersion exposures is assumed to result mainly from copepods grazing on oil droplets, which offers an alternative uptake route to passive diffusion. To a large degree this route is controlled by the filtration rates of the copepods, which may be inversely related to droplet concentration.


Assuntos
Copépodes , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Biomassa , Água do Mar , Água
9.
Environ Sci Technol ; 52(17): 9899-9907, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29897747

RESUMO

The risk of accidental oil spills in the Arctic is on the rise due to increased shipping and oil exploration activities, making it essential to calibrate parameters for risk assessment of oil spills to Arctic conditions. The toxicokinetics of crude oil components were assessed by exposing one lipid-poor (CIII) and one lipid-rich (CV) stage of the Arctic copepod Calanus hyperboreus to crude oil WSF (water-soluble fraction). Water concentrations and total body residues (BR), as well as lipid volume fractions, were measured at regular intervals during exposure and recovery. Bioconcentration factors (BCFs) and elimination rates ( ke) for 26 petrogenic oil components were estimated from one-compartment models fitted to the BR data. Our parameters were compared to estimations made by the OMEGA bioaccumulation model, which uses the octanol-water partitioning coefficient ( KOW) in QSAR (quantitative structure-activity relationship) predictions. Our parameters for the lipid-poor CIIIs generally agreed with the OMEGA predictions, while neither the BCFs nor the kes for the lipid-rich CVs fitted within the realistic range of the OMEGA parameters. Both the uptake and elimination rates for the CVs were in general half an order of magnitude lower than the OMEGA predictions, showing an overestimation of these parameters by the OMEGA model.


Assuntos
Copépodes , Petróleo , Poluentes Químicos da Água , Animais , Regiões Árticas , Toxicocinética
10.
J Toxicol Environ Health A ; 80(16-18): 932-940, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28850016

RESUMO

Toxic effects of organic hydrophobic contaminants include impacts on fish heart rate (HR) and cardiac functioning. Thus, in ecotoxicology as well as aquaculture and even medicine, fish heart functioning plays an important role in application areas. The aim of this study was to assemble a pipeline of image processing and statistical techniques to extract HR information from microscopy videos of the embryo and larval stages of three species of fish (Atlantic cod, haddock, and Atlantic bluefin tuna). The method enables automatic processing for a large number of individuals, saving a significant amount of time compared with manual processing, while simultaneously eliminating the type of errors such a manual process might incur.


Assuntos
Peixes/classificação , Frequência Cardíaca , Microscopia de Vídeo , Animais , Peixes/embriologia , Gadiformes/embriologia , Gadus morhua/embriologia , Coração/fisiologia , Larva/fisiologia , Modelos Teóricos
11.
J Toxicol Environ Health A ; 80(16-18): 820-829, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28777041

RESUMO

Use of hydrogen peroxide (H2O2) for removal of salmon lice in the aquaculture industry has created concern that non-target organisms might be affected during treatment scenarios. The aim of the present study was to examine the potential for H2O2 to produce oxidative stress and reduce survival in one of the most abundant zooplankton species in Norwegian coastal areas, the copepod Calanus finmarchicus. Copepods were subjected to two 96-hr tests: (1) acute toxicity test where mortality was determined and (2) treated copepods were exposed to concentrations below the No Observed Effect Concentration (0.75 mg/L) H2O2 and analyzed for antioxidant enzyme activities, as well as levels of glutathione (GSH) and malondialdehyde (MDA). Compared to available and comparable LC50 values from the literature, our results suggest that C. finmarchicus is highly sensitive to H2O2. However, 96-hr exposure of C. finmarchicus to 0.75 mg H2O2/L did not significantly affect the antioxidant systems even though the concentration is just below the level where mortality is expected. Data suggest that aqueous H2O2 exposure did not cause cellular accumulation with associated oxidative stress, but rather produced acute effects on copepod surface (carapace). Further investigation is required to ensure that aqueous exposure during H2O2 treatment in salmon fish farms does not exert adverse effects on local non-target crustacean species and populations. In particular, studies on copepod developmental stages with a more permeable carapace are warranted.


Assuntos
Copépodes/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Resistência a Medicamentos , Contaminação de Alimentos/prevenção & controle , Glutationa/metabolismo , Dose Letal Mediana , Malondialdeído/metabolismo , Nível de Efeito Adverso não Observado , Noruega , Espécies Reativas de Oxigênio/metabolismo , Água do Mar/química , Testes de Toxicidade Aguda
12.
J Toxicol Environ Health A ; 80(16-18): 845-861, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28841366

RESUMO

Inorganic mercury (Hg) is highly toxic to organisms including crustaceans and displays multiple toxic modes of action (MoA). The main aim of this investigation was to assess the acute and sublethal toxicity mediated by mercury chloride (HgCl2) in the marine copepod Calanus finmarchicus. A combination of short-term static studies to determine acute toxicity and a transcriptional investigation to characterize the sublethal MoA of HgCl2 were conducted with an in-house continuous culture of C. finmarchicus. Transcriptional changes were determined by a custom 6.6 k C. finmarchicus Agilent oligonucleotide microarray and quantitative RT-PCR analysis. Data demonstrate that HgCl2 produced a concentration- and time-dependent reduction in survival (NOEC48 h = 6.9 µg/L [Hg2+] and LC50 of 279, 73, 48, and 34 µg/L [Hg2+] after 24, 48, 72, and 96 h, respectively) and that exposure to sublethal concentrations of HgCl2 (5 µg/L [Hg2+]) induced differential expression of 98 features (probes) on the microarray. Gene ontology (GO) and toxicological pathway analyses suggested that the main MOA were (1) uncoupling of mitochondrial oxidative phosphorylation (OXPHOS) and ATP production, (2) oxidative stress and macromolecular damage, (3) inactivation of cellular enzymes, (4) induction of cellular apoptosis and autophagocytosis, (5) over-excitation of glutamate receptors (neurotoxicity), (6) disruption of calcium homeostasis and signaling, and (7) modulation of nuclear receptor activity involved in vitamin D receptor signaling. Quantitative RT-PCR analysis verified that oligoarray performed reliably in terms of specificity and response, thus demonstrating that Hg2+ exerts multiple potential MoA in C. finmarchicus.


Assuntos
Copépodes/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Mercúrio/toxicidade , Animais , Biologia Computacional , Copépodes/metabolismo , Ontologia Genética , Análise em Microsséries , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Transmissão Sináptica/efeitos dos fármacos , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade
13.
J Toxicol Environ Health A ; 80(16-18): 881-894, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28841382

RESUMO

Copepods of the genus Calanus have the potential for accumulating lipophilic oil components due to their high lipid content and found to filter and ingest oil droplets during exposure. As female copepods produce eggs at the expense of lipid storage, there is a concern for transfer of lipophilic contaminants to offspring. To assess the potential for maternal transfer of oil components, ovigerous female copepods (Calanus finmarchicus) were exposed to filtered and unfiltered oil dispersions for 4 days, collected and eggs maintained in clean seawater and hatching and gene expression examined in hatched nauplii. Oil droplet exposure contributed to polycyclic aromatic hydrocarbon (PAH) uptake in dispersion-treated adult copepods, as displayed through PAH body residue analyses and fluorescence microscopy. Applying the latter methodology, transfer of heavy PAH from copepod mothers to offspring were detected Subtle effects were observed in offspring as evidenced by a temporal reduction in hatching success appear to be occurring only when mothers were exposed to the unfiltered oil dispersions. Offspring reared in clean water through to late naupliar stages were collected for RNA extraction and preparation of libraries for high-throughput transcriptome sequencing. Differentially expressed genes were identified through pairwise comparisons between treatments. Among these, several expressed genes have known roles in responses to chemical stress including xenobiotic metabolism enzymes, antioxidants, chaperones, and components of the inflammatory response. While gene expression results suggest a transgenerational activation of stress responses, the increase in relatively small number of differentially expressed genes suggests a minor long-term effect on offspring following maternal exposure.


Assuntos
Copépodes/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Exposição Materna/efeitos adversos , Petróleo/toxicidade , RNA/genética , RNA/isolamento & purificação , Reprodução/efeitos dos fármacos , Água do Mar/química
14.
J Toxicol Environ Health A ; 80(16-18): 907-915, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28891761

RESUMO

The aim of this study was to investigate impacts of fine particulate fraction of a commonly used barite-containing drilling mud on the pelagic filter feeding copepod Calanus finmarchicus. The results show that the tested drilling mud had a low acute toxicity on C. finmarchicus (LC50 > 320 mg/L) and that the observed toxicity was likely caused by dissolved constituents in the mud and not the particle phase containing the weighting agent barite. Further, animals were exposed to drilling mud at a concentration of 10 mg/L for 168 hr followed by a 100 hr recovery phase. A rapid uptake of drilling mud particles was observed, while the excretion was slow and incomplete even after 100 hr recovery in clean seawater. The uptake of drilling mud particles caused a significant increase in sinking velocity of copepods, indicating that uptake of drilling mud particles affected their buoyancy. Long-term exposure to low concentrations of drilling mud could therefore cause physical effects such as impacts on the animal's buoyancy which may affect the energy budget of the copepods.


Assuntos
Copépodes/efeitos dos fármacos , Material Particulado/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Dose Letal Mediana , Petróleo/toxicidade , Água do Mar/química , Testes de Toxicidade Aguda
15.
Environ Sci Technol ; 50(22): 12446-12454, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27700057

RESUMO

Studies investigating the effect of carbon nanotubes (CNTs) on the bioavailability and toxicity of hydrophobic organic compounds in aquatic environments have generated contradictory results, and the influence of different CNT properties remains unknown. Here, the adsorption of the polycyclic aromatic hydrocarbon phenanthrene (70-735 µg/L) to five types of CNTs exhibiting different physical and chemical properties was studied. The CNTs were dispersed in the presence of natural organic matter (nominally 20 mg/L) in order to increase the environmental relevance of the study. Furthermore, the bioavailability and toxicity of phenanthrene to Daphnia magna in the absence and presence of dispersed CNTs was investigated. Both CNT dispersion and adsorption of phenanthrene appeared to be influenced by CNT physical properties (diameter and specific surface area). However, dispersion and phenanthrene adsorption was not influenced by CNT surface chemical properties (surface oxygen content), under the conditions tested. Based on nominal phenanthrene concentrations, a reduction in toxicity to D. magna was observed during coexposure to phenanthrene and two types of CNTs, while for the others, no influence on phenanthrene toxicity was observed. Based on freely dissolved concentrations, however, an increased toxicity was observed in the presence of all CNTs, indicating bioavailability of CNT-adsorbed phenanthrene to D. magna.


Assuntos
Daphnia/efeitos dos fármacos , Nanotubos de Carbono/química , Adsorção , Animais , Disponibilidade Biológica , Fenantrenos/química , Poluentes Químicos da Água/química
16.
Environ Sci Technol ; 50(5): 2660-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26824708

RESUMO

The bioavailability of organic contaminants adsorbed to carbon nanotubes (CNTs) remains unclear, especially in complex natural freshwaters containing natural organic matter (NOM). Here, we report on the adsorption capacity (Q(0)) of five CNTs exhibiting different physicochemical properties, including a single-walled CNT (SWCNTs), multiwalled CNTs (MWCNT-15 and MWCNT-30), and functionalized MWCNTs (hydroxyl, -OH, and carboxyl, -COOH), for the model polycyclic aromatic hydrocarbon phenanthrene (3.1-800 µg/L). The influence of phenanthrene adsorption by the CNTs on bioavailability and toxicity was investigated using the freshwater algae Pseudokirchneriella subcapitata. CNTs were dispersed in algal growth media containing NOM (DOC, 8.77 mg/L; dispersed concentrations: 0.5, 1.3, 1.3, 3.3, and 6.1 mg/L for SWCNT, MWCNT-15, MWCNT-30, MWCNT-OH, and MWCNT-COOH, respectively). Adsorption isotherms of phenanthrene to the dispersed CNTs were fitted with the Dubinin-Ashtakhov model. Q(0) differed among the CNTs, increasing with increasing surface area and decreasing with surface functionalization. SWCNT and MWCNT-COOH exhibited the highest and lowest log Q(0) (8.891 and 7.636 µg/kg, respectively). The presence of SWCNTs reduced phenanthrene toxicity to algae (EC50; 528.4) compared to phenanthrene-only (EC50; 438.3), and the presence of MWCNTs had no significant effect on phenanthrene toxicity. However, phenanthrene adsorbed to NOM-dispersed CNTs proved to be bioavailable and contribute to exert toxicity to P. subcapitata.


Assuntos
Clorófitas/efeitos dos fármacos , Nanotubos de Carbono , Fenantrenos/farmacocinética , Fenantrenos/toxicidade , Poluentes Químicos da Água/toxicidade , Adsorção , Disponibilidade Biológica , Ecotoxicologia/métodos , Nanotubos de Carbono/química , Fenantrenos/química
17.
J Toxicol Environ Health A ; 79(13-15): 549-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27484137

RESUMO

In this investigation, acute toxicity data were used from two previously reported studies where cold-water copepods were exposed to mechanically dispersed (MD) and chemically (CD) dispersed oil. In one of these studies, concentration-dependent mortality was observed, whereas no apparent relationship between exposure concentration and mortality was found in the other. The only marked difference between the studies is that copepods in the first experiment displayed a lower lipid sac volume (on average) than in the second one. In this study additional biometric data on lipid content were utilized and observed effects and toxicokinetics modeling applied in order to investigate whether differences in sensitivity between copepod cohorts might be explained by differences in lipid content. Results suggest that although a considerable lipid sac might retard toxicokinetics, the observed differences in lipid volume are not sufficient to explain differences in toxicity. Further, there are no apparent indications that acute toxic stress leads to lipid depletion, or that acute increased mortality rate selectively affects lipid-poor individuals. It is conceivable that other potential explanations exist, but the causal relationship between lipid content and increased mortality frequency remains elusive.


Assuntos
Copépodes/efeitos dos fármacos , Copépodes/metabolismo , Metabolismo dos Lipídeos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Toxicocinética
18.
J Toxicol Environ Health A ; 79(13-15): 558-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27484138

RESUMO

Exposure of first-feeding cod larvae (Gadus morhua) to dispersed oil results in reduced feeding during an important transition period. First-feeding cod larvae were subjected to a 4-d treatment of food deprivation and sampled for microarray analyses. These microarray data were combined with data from cod larvae treated with mechanically and chemically dispersed oil in an attempt to understand to what extent starvation might explain some of the effects observed in first-feeding cod larvae during oil exposure. Transcriptional profiling of cod larvae suggested that the influence of oil exposure was almost as dramatic as being completely deprived of food. Protein and cellular degradation and loss of amino acids and glucose appear to be concomitant responses to both oil exposure and starvation. Fluorescence imaging of gut content indicated low uptake of food, and reduced growth (decrease in dry weight and in carbon and nitrogen content) was also noted in oil-exposed larvae, providing phenotypic anchoring of microarray data. The study displays the importance in combining use of high-throughput molecular tools with assessment of fitness-related endpoints in order to provide a greater understanding of toxicant-induced responses. This combined-approach investigation suggests that reduction of food uptake is an important process to be included when predicting effects of accidental oil spills. Finally, when comparing data from two oil treatments, exposure to chemically dispersed oil did not appear to result in greater toxicity than exposure to mechanically dispersed oil.


Assuntos
Privação de Alimentos , Gadus morhua/genética , Gadus morhua/metabolismo , Petróleo/toxicidade , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
19.
Fish Physiol Biochem ; 42(1): 137-47, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26349454

RESUMO

The dietary requirement of phospholipid (PL) of fish larvae has been suggested to originate in an inefficient ability for de novo biosynthesis of PL based on dietary triacylglycerol (TAG). The main objective of the present study was to investigate whether cod larvae could synthesis PL from sn-2-monoacylglycerol (2-MAG) and glycerol precursors. A tube feeding method was used to deliver equal molar aliquots of 2-oleoyl-[1,2,3-(3)H]glycerol and [U-(14)C] glycerol together with bovine serum albumin (BSA) bound 16:0 (palmitic acid) and 22:6n-3 (docosahexaenoic acid, DHA), with or without choline chloride to the foregut of anesthetized cod larvae and thereafter monitoring the metabolism of these components in the larvae through 4 h following injection. Our results showed that both 2-MAG and glycerol precursors contributed to the de novo synthesis of phosphatidylcholine (PC) and the 2-MAG pathway predominated over the G-3-P (glycerol-3-phosphate) pathway in the synthesis of TAG and PC. The molecular ratio of PC/TAG obtained from the 2-MAG and the G-3-P pathways was 0.44-0.74 and 1.02-2.06 within the first hour of tube feeding, suggesting they might have comparable biosynthesis ability of PC and TAG under the conditions of the present study. Furthermore, supplementation of choline chloride significantly increased PC/TAG ratio (p < 0.05) for both pathways. However, further studies are needed to quantify the enzyme activity involved in the CDP-choline (cytidine diphosphate choline) pathway, and the function of choline either in simulating PC synthesis or TAG catabolism or both needs further investigation.


Assuntos
Glicerol/análogos & derivados , Glicerol/farmacologia , Larva/efeitos dos fármacos , Fosfolipídeos/biossíntese , Animais , Colina/farmacologia , Gadus morhua/metabolismo , Larva/metabolismo , Soroalbumina Bovina/farmacologia
20.
Photochem Photobiol Sci ; 14(7): 1357-66, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26088711

RESUMO

Here we evaluate the photosensitizer meso-tetraphenyl chlorin disulphonate (TPCS2a) in survival studies of rat glioma cancer cells in combination with the novel photochemical internalization (PCI) technique. The tested anticancer drugs were bleomycin (BLM) and temozolomide (TMZ). Glioma cells were incubated with TPCS2a (0.2 µg ml(-1), 18 h, 37 °C) before BLM or TMZ stimulation (4 h) prior to red light illumination (652 nm, 50 mW cm(-2)). The cell survival after BLM (0.5 µm)-PCI (40 s light) quantified using the MTT assay was reduced to about 25% after 24 h relative to controls, and to 31% after TMZ-PCI. The supplementing quantification by clonogenic assays, using BLM (0.1 µm), indicated a long-term cytotoxic effect: the surviving fraction of clonogenic cells was reduced to 5% after light exposure (80 s) with PCI, compared to 70% in the case of PDT. In parallel, structural and morphological changes within the cells upon light treatment were examined using fluorescence microscopy techniques. The present study demonstrates that PCI of BLM is an effective method for killing F98 glioma cells, but smaller effects were observed using TMZ following the "light after" strategy. The results are the basis for further in vivo studies on our rat glioma cancer model using PDT and PCI.


Assuntos
Antineoplásicos/metabolismo , Bleomicina/metabolismo , Dacarbazina/análogos & derivados , Glioma/metabolismo , Processos Fotoquímicos , Animais , Antineoplásicos/química , Bleomicina/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Dacarbazina/química , Dacarbazina/metabolismo , Luz , Estrutura Molecular , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Ratos , Temozolomida , Ensaio Tumoral de Célula-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA