Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 190(1): 657-668, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35703985

RESUMO

Fruits can be divided into dry and fleshy types. Dry fruits mature through senescence and fleshy fruits through ripening. Previous studies have indicated that partially common molecular networks could govern fruit maturation in these different fruit types. However, the nature of such networks remains obscure. CLASS-II KNOX genes were shown to regulate the senescence of the Arabidopsis (Arabidopsis thaliana) dry fruits, the siliques, but their roles in fleshy-fruit development are unknown. Here, we investigated the roles of the tomato (Solanum lycopersicum) CLASS-II KNOX (TKN-II) genes in fleshy fruit ripening using knockout alleles of individual genes and an artificial microRNA line (35S:amiR-TKN-II) simultaneously targeting all genes. 35S:amiR-TKN-II plants, as well as a subset of tkn-II single and double mutants, have smaller fruits. Strikingly, the 35S:amiR-TKN-II and tknII3 tknII7/+ fruits showed early ripening of the locular domain while their pericarp ripening was stalled. Further examination of the ripening marker-gene RIPENING INHIBITOR (RIN) expression and 35S:amiR-TKN-II rin-1 mutant fruits suggested that TKN-II genes arrest RIN activity at the locular domain and promote it in the pericarp. These findings imply that CLASS-II KNOX genes redundantly coordinate maturation in both dry and fleshy fruits. In tomato, these genes also control spatial patterns of fruit ripening, utilizing differential regulation of RIN activity at different fruit domains.


Assuntos
Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
2.
J Exp Bot ; 74(3): 848-863, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36383402

RESUMO

The pericarp is the predominant tissue determining the structural characteristics of most fruits. However, the molecular and genetic mechanisms controlling pericarp development remain only partially understood. Previous studies have identified that CLASS-II KNOX genes regulate fruit size, shape, and maturation in Arabidopsis thaliana and Solanum lycopersicum. Here we characterized the roles of the S. lycopersicum CLASS-II KNOX (TKN-II) genes in pericarp development via a detailed histological, anatomical, and karyotypical analysis of TKN-II gene clade mRNA-knockdown (35S:amiR-TKN-II) fruits. We identify that 35S:amiR-TKN-II pericarps contain more cells around their equatorial perimeter and fewer cell layers than the control. In addition, the cell sizes but not the ploidy levels of these pericarps were dramatically reduced. Further, we demonstrate that fruit shape and pericarp layer number phenotypes of the 35S:amiR-TKN-II fruits can be overridden by the procera mutant, known to induce a constitutive response to the plant hormone gibberellin. However, neither the procera mutation nor exogenous gibberellin application can fully rescue the reduced pericarp width and cell size phenotype of 35S:amiR-TKN-II pericarps. Our findings establish that TKN-II genes regulate tomato fruit anatomy, acting via gibberellin to control fruit shape but utilizing a gibberellin-independent pathway to control the size of pericarp cells.


Assuntos
Giberelinas , Solanum lycopersicum , Giberelinas/metabolismo , Frutas/metabolismo , Solanum lycopersicum/genética , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
PLoS Genet ; 11(2): e1004980, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25671434

RESUMO

Neofunctionalization following gene duplication is thought to be one of the key drivers in generating evolutionary novelty. A gene duplication in a common ancestor of land plants produced two classes of KNOTTED-like TALE homeobox genes, class I (KNOX1) and class II (KNOX2). KNOX1 genes are linked to tissue proliferation and maintenance of meristematic potentials of flowering plant and moss sporophytes, and modulation of KNOX1 activity is implicated in contributing to leaf shape diversity of flowering plants. While KNOX2 function has been shown to repress the gametophytic (haploid) developmental program during moss sporophyte (diploid) development, little is known about KNOX2 function in flowering plants, hindering syntheses regarding the relationship between two classes of KNOX genes in the context of land plant evolution. Arabidopsis plants harboring loss-of-function KNOX2 alleles exhibit impaired differentiation of all aerial organs and have highly complex leaves, phenocopying gain-of-function KNOX1 alleles. Conversely, gain-of-function KNOX2 alleles in conjunction with a presumptive heterodimeric BELL TALE homeobox partner suppressed SAM activity in Arabidopsis and reduced leaf complexity in the Arabidopsis relative Cardamine hirsuta, reminiscent of loss-of-function KNOX1 alleles. Little evidence was found indicative of epistasis or mutual repression between KNOX1 and KNOX2 genes. KNOX proteins heterodimerize with BELL TALE homeobox proteins to form functional complexes, and contrary to earlier reports based on in vitro and heterologous expression, we find high selectivity between KNOX and BELL partners in vivo. Thus, KNOX2 genes confer opposing activities rather than redundant roles with KNOX1 genes, and together they act to direct the development of all above-ground organs of the Arabidopsis sporophyte. We infer that following the KNOX1/KNOX2 gene duplication in an ancestor of land plants, neofunctionalization led to evolution of antagonistic biochemical activity thereby facilitating the evolution of more complex sporophyte transcriptional networks, providing plasticity for the morphological evolution of land plant body plans.


Assuntos
Arabidopsis/genética , Evolução Molecular , Duplicação Gênica , Proteínas de Homeodomínio/genética , Estágios do Ciclo de Vida/genética , Proteínas de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Cardamine/genética , Cardamine/crescimento & desenvolvimento , Diploide , Regulação da Expressão Gênica de Plantas , Haploidia , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento
4.
Plant J ; 86(6): 443-57, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27121172

RESUMO

In the development of tomato compound leaves, local auxin maxima points, separated by the expression of the Aux/IAA protein SlIAA9/ENTIRE (E), direct the formation of discrete leaflets along the leaf margin. The local auxin maxima promote leaflet initiation, while E acts between leaflets to inhibit auxin response and lamina growth, enabling leaflet separation. Here, we show that a group of auxin response factors (ARFs), which are targeted by miR160, antagonizes auxin response and lamina growth in conjunction with E. In wild-type leaf primordia, the miR160-targeted ARFs SlARF10A and SlARF17 are expressed in leaflets, and SlmiR160 is expressed in provascular tissues. Leaf overexpression of the miR160-targeted ARFs SlARF10A, SlARF10B or SlARF17, led to reduced lamina and increased leaf complexity, and suppressed auxin response in young leaves. In agreement, leaf overexpression of miR160 resulted in simplified leaves due to ectopic lamina growth between leaflets, reminiscent of e leaves. Genetic interactions suggest that E and miR160-targeted ARFs act partially redundantly but are both required for local inhibition of lamina growth between initiating leaflets. These results show that different types of auxin signal antagonists act cooperatively to ensure leaflet separation in tomato leaf margins.


Assuntos
Ácidos Indolacéticos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , MicroRNAs/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética
5.
Nat Genet ; 39(6): 787-91, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17486095

RESUMO

Plant leaves show pronounced plasticity of size and form. In the classical, partially dominant mutation Lanceolate (La), the large compound leaves of tomato (Solanum lycopersicum) are converted into small simple ones. We show that LA encodes a transcription factor from the TCP family containing an miR319-binding site. Five independent La isolates are gain-of-function alleles that result from point mutations within the miR319-binding site and confer partial resistance of the La transcripts to microRNA (miRNA)-directed inhibition. The reduced sensitivity to miRNA regulation leads to elevated LA expression in very young La leaf primordia and to precocious differentiation of leaf margins. In contrast, downregulation of several LA-like genes using ectopic expression of miR319 resulted in larger leaflets and continuous growth of leaf margins. Our results imply that regulation of LA by miR319 defines a flexible window of morphogenetic competence along the developing leaf margin that is required for leaf elaboration.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , MicroRNAs/genética , Folhas de Planta/genética , Solanum lycopersicum/genética , Primers do DNA/química , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Plant Cell ; 24(9): 3575-89, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23001036

RESUMO

Interfering with small RNA production is a common strategy of plant viruses. A unique class of small RNAs that require microRNA and short interfering (siRNA) biogenesis for their production is termed trans-acting short interfering RNAs (ta-siRNAs). Tomato (Solanum lycopersicum) wiry mutants represent a class of phenotype that mimics viral infection symptoms, including shoestring leaves that lack leaf blade expansion. Here, we show that four WIRY genes are involved in siRNA biogenesis, and in their corresponding mutants, levels of ta-siRNAs that regulate AUXIN RESPONSE FACTOR3 (ARF3) and ARF4 are reduced, while levels of their target ARFs are elevated. Reducing activity of both ARF3 and ARF4 can rescue the wiry leaf lamina, and increased activity of either can phenocopy wiry leaves. Thus, a failure to negatively regulate these ARFs underlies tomato shoestring leaves. Overexpression of these ARFs in Arabidopsis thaliana, tobacco (Nicotiana tabacum), and potato (Solanum tuberosum) failed to produce wiry leaves, suggesting that the dramatic response in tomato is exceptional. As negative regulation of orthologs of these ARFs by ta-siRNA is common to land plants, we propose that ta-siRNA levels serve as universal sensors for interference with small RNA biogenesis, and changes in their levels direct species-specific responses.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , RNA Interferente Pequeno/genética , Solanum lycopersicum/genética , Alelos , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Sequência de Bases , Loci Gênicos , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/fisiologia , Dados de Sequência Molecular , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , RNA de Plantas/genética , Análise de Sequência de DNA , Solanum tuberosum/anatomia & histologia , Solanum tuberosum/genética , Especificidade da Espécie , Nicotiana/anatomia & histologia , Nicotiana/genética
7.
Elife ; 52016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27710768

RESUMO

Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Meristema/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Transcriptoma , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Plant Cell ; 21(5): 1373-93, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19435933

RESUMO

Floral organ identities are specified by a few transcription factors that act as master regulators. Subsequently, specification of organ axes programs the distribution of distinct tissue types within the organs that themselves develop unique identities. The C-class, AGAMOUS-clade MADS box genes are primary promoters of the gynoecium, which is divided into a distal style and a subtending ovary along the apical-basal axis. We show that members of a clade of B3 domain transcription factors, NGATHA1 (NGA1) to NGA4, are expressed distally in all lateral organs, and all four have a redundant and essential role in style development. Loss of all four genes results in gynoecia where style is replaced by valve-like projections and a reduction in style-specific SHATTERPROOF1 (SHP1) expression. In agreement, floral misexpression of NGA1 promotes ectopic style and SHP1 expression. STYLISH1, an auxin biosynthesis inducer, conditionally activated NGA genes, which in turn promoted distal expression of other STY genes in a putative positive feedback loop. Inhibited auxin transport or lack of YABBY1 gene activities resulted in a basally expanded style domain and broader expression of NGA genes. We speculate that early gynoecium factors delimit NGA gene response to an auxin-based signal, elicited by STY gene activity, to restrict the activation of style program to a late and distal carpel domain.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Transporte Biológico , Diferenciação Celular/genética , Retroalimentação Fisiológica , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Filogenia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Development ; 136(5): 823-32, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19176589

RESUMO

Leaves are formed at the flanks of the shoot apical meristem (SAM) and develop into a variety of forms. In tomato, prolonged leaf patterning enables the elaboration of compound leaves by reiterative initiation of leaflets with lobed margins. In goblet (gob) loss-of-function mutants, primary leaflets are often fused, secondary leaflets and marginal serrations are absent, and SAMs often terminate precociously. We show that GOB encodes a NAC-domain transcription factor expressed in narrow stripes at the leaf margins, flanking the distal side of future leaflet primordia, and at the boundaries between the SAM and leaf primordia. Leaf-specific overexpression of the microRNA miR164, a negative regulator of GOB-like genes, also leads to loss of secondary-leaflet initiation and to smooth leaflet margins. Plants carrying a dominant gob allele with an intact ORF but disrupted miR164 binding site produce more cotyledons and floral organs, have split SAMs and, surprisingly, simpler leaves. Overexpression of a form of GOB with an altered miR164 binding site in leaf primordia leads to delayed leaflet maturation, frequent, improperly timed and spaced initiation events, and a simple mature leaflet form owing to secondary-leaflet fusion. miR164 also affects leaflet separation in Cardamine hirsuta, a Brassicaceae species with complex leaves. Genetic and molecular analyses suggest that GOB expression is intact in the simplified leaves of entire tomato mutants, which have a defect in a putative repressor of auxin responses. Our results show that GOB marks leaflet boundaries and that its accurate spatial, temporal and quantitative activity affects leaf elaboration in a context-dependent manner.


Assuntos
Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Padronização Corporal/genética , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Solanum lycopersicum/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , MicroRNAs/genética , Modelos Biológicos , Mutação , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Fatores de Transcrição/genética
10.
Plant Cell ; 20(5): 1217-30, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18469164

RESUMO

Shoot apical meristems (SAMs) are self-sustaining groups of cells responsible for the ordered initiation of all aerial plant tissues, including stems and lateral organs. The precise coordination of these processes argues for crosstalk between the different SAM domains. The products of YABBY (YAB) genes are limited to the organ primordium domains, which are situated at the periphery of all SAMs and which are separated by a margin of three to seven cells from the central meristem zone marked by WUSCHEL and CLAVATA3 expression. Mutations in the two related YAB1 genes, FILAMENTOUS FLOWER and YABBY3 (YAB3), cause an array of defects, including aberrant phyllotaxis. We show that peripheral YAB1 activity nonautonomously and sequentially affects the phyllotaxis and growth of subsequent primordia and coordinates the expression of SAM central zone markers. These effects support a role for YAB1 genes in short-range signaling. However, no evidence was found that YAB1 gene products are themselves mobile. A screen for suppression of a floral YAB1 overexpression phenotype revealed that the YAB1-born signals are mediated in part by the activity of LATERAL SUPPRESSOR. This GRAS protein is expressed at the boundary of organ primordia and the SAM central zone, distinct from the YAB1 expression domain. Together, these results suggest that YAB1 activity stimulates signals from the organs to the meristem via a secondary message or signal cascade, a process essential for organized growth of the SAM.


Assuntos
Proteínas de Arabidopsis/genética , Flores/genética , Meristema/genética , Brotos de Planta/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Flores/embriologia , Flores/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Meristema/embriologia , Meristema/ultraestrutura , MicroRNAs/genética , MicroRNAs/metabolismo , Microscopia Eletrônica de Varredura , Brotos de Planta/embriologia , Brotos de Planta/ultraestrutura , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
11.
Plant Cell ; 18(5): 1134-51, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16603651

RESUMO

Recent studies demonstrated that pattern formation in plants involves regulation of transcription factor families by microRNAs (miRNAs). To explore the potency, autonomy, target range, and functional conservation of miRNA genes, a systematic comparison between plants ectopically expressing pre-miRNAs and plants with corresponding multiple mutant combinations of target genes was performed. We show that regulated expression of several Arabidopsis thaliana pre-miRNA genes induced a range of phenotypic alterations, the most extreme ones being a phenocopy of combined loss of their predicted target genes. This result indicates quantitative regulation by miRNA as a potential source for diversity in developmental outcomes. Remarkably, custom-made, synthetic miRNAs vectored by endogenous pre-miRNA backbones also produced phenocopies of multiple mutant combinations of genes that are not naturally regulated by miRNA. Arabidopsis-based endogenous and synthetic pre-miRNAs were also processed effectively in tomato (Solanum lycopersicum) and tobacco (Nicotiana tabacum). Synthetic miR-ARF targeting Auxin Response Factors 2, 3, and 4 induced dramatic transformations of abaxial tissues into adaxial ones in all three species, which could not cross graft joints. Likewise, organ-specific expression of miR165b that coregulates the PHABULOSA-like adaxial identity genes induced localized abaxial transformations. Thus, miRNAs provide a flexible, quantitative, and autonomous platform that can be employed for regulated expression of multiple related genes in diverse species.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/fisiologia , RNA de Plantas/fisiologia , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Regulação para Baixo , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , MicroRNAs/química , MicroRNAs/genética , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/fisiologia , RNA de Plantas/química , RNA de Plantas/genética , Nicotiana/anatomia & histologia , Nicotiana/genética , Nicotiana/metabolismo
12.
Proc Natl Acad Sci U S A ; 103(16): 6398-403, 2006 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-16606827

RESUMO

The systemic model for floral induction, dubbed florigen, was conceived in photoperiod-sensitive plants but implies, in its ultimate form, a graft-transmissible signal that, although activated by different stimuli in different flowering systems, is common to all plants. We show that SFT (SINGLE-FLOWER TRUSS), the tomato ortholog of FLOWERING LOCUS T (FT), induces flowering in day-neutral tomato and tobacco plants and is encoded by SFT. sft tomato mutant plants are late-flowering, with altered architecture and flower morphology. SFT-dependent graft-transmissible signals complement all developmental defects in sft plants and substitute for long-day stimuli in Arabidopsis, short-day stimuli in Maryland Mammoth tobacco, and light-dose requirements in tomato uniflora mutant plants. The absence of donor SFT RNA from flowering receptor shoots and the localization of the protein in leaf nuclei implicate florigen-like messages in tomato as a downstream pathway triggered by cell-autonomous SFT RNA transcripts. Flowering in tomato is synonymous with termination of the shoot apical meristems, and systemic SFT messages attenuate the growth of apical meristems before and independent of floral production. Floral enhancement by systemic SFT signals is therefore one pleiotropic effect of FT orthologs.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Proteínas de Plantas/genética , Solanum lycopersicum/crescimento & desenvolvimento , Núcleo Celular/química , Meio Ambiente , Flores/anatomia & histologia , Flores/genética , Genes de Plantas/genética , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/genética , Meristema/fisiologia , Mutação , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Transcrição Gênica
13.
Plant Cell ; 17(11): 2899-910, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16199616

RESUMO

Members of the KANADI gene family in Arabidopsis thaliana regulate abaxial identity and laminar growth of lateral organs. Promoter APETALA3-mediated ectopic expression of KANADI restricts petal expansion and was used in a genetic screen for factors involved in KANADI-mediated signaling. Through this screen, mutations in ETTIN (ETT; also known as Auxin Response Factor3 [ARF3]) were isolated as second site suppressors and found to ameliorate ectopic KANADI activity throughout the plant as well. Mutant phenotypes of ett are restricted to flowers; however, double mutants with a closely related gene ARF4 exhibit transformation of abaxial tissues into adaxial ones in all aerial parts, resembling mutations in KANADI. Accordingly, the common RNA expression domain of both ARFs was found to be on the abaxial side of all lateral organs. Truncated, negatively acting gene products of strong ett alleles map to an ARF-specific, N-terminal domain of ETT. Such gene products strongly enhance abaxial tissue loss only when ARF activities are compromised. As KANADI is not required for either ETT or ARF4 transcription, and their overexpression cannot rescue kanadi mutants, cooperative activity is implied. ARF proteins are pivotal in mediating auxin responses; thus, we present a model linking transient local auxin gradients and gradual partitioning of lateral organs along the abaxial/adaxial axis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Flores/genética , Flores/metabolismo , Lateralidade Funcional/genética , Genes Supressores/fisiologia , Mutação/genética , Proteínas Nucleares/genética , Fenótipo , Estrutura Terciária de Proteína/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos Reguladores de Transcrição/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA