Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(10): e1009991, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610054

RESUMO

Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrPC roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrPC expressing 1C11 neuronal stem cell line to those of PrPnull-1C11 cells stably repressed for PrPC expression, we here unravel that PrPC contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrPC tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids ß-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrPC metabolic role by pathogenic prions PrPSc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids ß-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrPSc-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.


Assuntos
Glucose/metabolismo , Degeneração Neural/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Estresse Oxidativo/fisiologia , Proteínas Quinases/metabolismo
2.
J Cell Physiol ; 229(11): 1673-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24615682

RESUMO

Knockout models have shown that the coagulation system has a role in vascular development and angiogenesis. Herein, we report for the first time that zymogen FX and its active form (FXa) possess anti-angiogenic properties. Both the recombinant FX and FXa inhibit angiogenesis in vitro using endothelial EA.hy926 and human umbilical cord vascular endothelial cells (HUVEC). This effect is dependent on the Gla domain of FX. We demonstrate that FX and FXa use different mechanisms: the use of Rivaroxaban (RX) a specific inhibitor of FXa attenuated its anti-angiogenic properties but did not modify the anti-angiogenic effect of FX. Furthermore, only the anti-angiogenic activity of FXa is PAR-1dependent. Using in vivo models, we show that FX and FXa are anti-angiogenic in the zebrafish intersegmental vasculature (ISV) formation and in the chick embryo chorioallantoic membrane (CAM) assays. Our results provide further evidence for the non-hemostatic functions of FX and FXa and demonstrate for the first time a biological role for the zymogen FX.


Assuntos
Inibidores da Angiogênese/farmacologia , Fator Xa/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Embrião de Galinha , Fator X/farmacologia , Fator X/uso terapêutico , Fator Xa/uso terapêutico , Proteínas de Helminto/farmacologia , Proteínas de Helminto/uso terapêutico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Receptor PAR-1/metabolismo , Peixe-Zebra
3.
Sci Rep ; 8(1): 10926, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026555

RESUMO

Cigarette smoke is associated with several pathologies including chronic respiratory diseases and cancer. In addition, exposure to cigarette smoke is correlated with impaired wound healing, where a significant decrease in the regenerative capacity of smokers is well documented and broadly considered a negative risk factor after trauma or surgery. So far, some in vitro and in vivo models have been described to study how exposure to cigarette smoke diminishes the regenerative potential in different organisms. However, although useful, many of these models are difficult and expensive to implement and do not allow high-throughput screening approaches. In order to establish a reliable and accessible model, we have evaluated the effects of cigarette smoke extract (CSE) on zebrafish development and regeneration. In this work, zebrafish embryos and larvae were exposed to low doses of aqueous CSE showing severe developmental abnormalities in a dose-dependent manner. Furthermore, when adult zebrafish were subjected to caudal fin amputation, we observed a significant decrease in the regenerative capacity of animals exposed to CSE. The effect was exacerbated in male and aged fish compared to female or young organisms. The establishment of a zebrafish model to assess the consequences of cigarette smoke and its effects on animal physiology could provide a new tool to study the underlying mechanisms involved in impaired tissue regeneration, and aid the development of novel approaches to treat complications associated with cigarette smoke toxicity.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Fumaça/efeitos adversos , Peixe-Zebra/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Masculino , Produtos do Tabaco , Cicatrização
4.
PLoS One ; 10(6): e0130295, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26126202

RESUMO

The extreme dependence on external oxygen supply observed in animals causes major clinical problems and several diseases are related to low oxygen tension in tissues. The vast majority of the animals do not produce oxygen but a few exceptions have shown that photosynthetic capacity is physiologically compatible with animal life. Such symbiotic photosynthetic relationships are restricted to a few aquatic invertebrates. In this work we aimed to explore if we could create a chimerical organism by incorporating photosynthetic eukaryotic cells into a vertebrate animal model. Here, the microalgae Chlamydomonas reinhardtii was injected into zebrafish eggs and the interaction and viability of both organisms were studied. Results show that microalgae were distributed into different tissues, forming a fish-alga chimera organism for a prolonged period of time. In addition, microscopic observation of injected algae, in vivo expression of their mRNA and re-growth of the algae ex vivo suggests that they survived to the developmental process, living for several days after injection. Moreover microalgae did not trigger a significant inflammatory response in the fish. This work provides additional evidence to support the possibility that photosynthetic vertebrates can be engineered.


Assuntos
Quimera/microbiologia , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/genética , Peixe-Zebra/microbiologia , Animais , Animais Geneticamente Modificados , Bioengenharia , Quimera/embriologia , Quimera/genética , Chlamydomonas reinhardtii/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/microbiologia , Microalgas/genética , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Microinjeções , Fotossíntese , RNA Mensageiro/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-23142146

RESUMO

2-Methoxyestradiol (2ME), an endogenous metabolite of 17ß-estradiol, has been previously reported to possess antiangiogenic and antitumor properties. Herein, we demonstrate that the effects of this antiangiogenic steroid can be readily assayed in live zebrafish, introducing a convenient and robust new model system as a screening tool for both single cell and collective cell migration assays. Using the in vitro mammalian endothelial cell line EA.hy926, we first show that cell migration and angiogenesis, as estimated by wound assay and tube formation respectively, are antagonized by 2ME. In zebrafish (Danio rerio) larvae, dose-dependent exposure to 2ME diminishes (1) larval angiogenesis, (2) leukocyte recruitment to damaged lateral line neuromasts and (3) retards the lateral line primordium in its migration along the body. Our results indicate that 2ME has an effect on collective cell migration in vivo as well as previously reported anti-tumorigenic activity and suggests that the molecular mechanisms governing cell migration in a variety of contexts are conserved between fish and mammals. Moreover, we exemplify the versatility of the zebrafish larvae for testing diverse physiological processes and screening for antiangiogenic and antimigratory drugs in vivo.


Assuntos
Inibidores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Movimento Celular/efeitos dos fármacos , Estradiol/análogos & derivados , 2-Metoxiestradiol , Animais , Animais Geneticamente Modificados , Linhagem Celular , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Larva/genética , Larva/metabolismo , Larva/fisiologia , Microscopia de Fluorescência , Neovascularização Fisiológica/efeitos dos fármacos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA