RESUMO
The design of ultratough hydrogels has recently emerged as a topic of great interest in the scientific community due to their ability to mimic the features of biological tissues. An outstanding strategy for preparing these materials relies on reversible and dynamic cross-links within the hydrogel matrix. In this work, inspired by the composition of ascidians' tunic, stretchable supramolecular hydrogels combining poly(vinyl alcohol), green tea-derived gallic acid, and rigid tannic acid-coated cellulose nanocrystals (TA@CNC) were designed. The addition of TA@CNC nanofillers in concentrations up to 1.2 wt % significantly impacted the mechanical and viscoelastic properties of the hydrogels due to the promotion of hydrogen bonding with the polymer matrix and polyphenols π-π stacking interactions. These supramolecular associations endow the hydrogels with excellent stretchability and strength (>340%, 540 kPa), low thermoreversible gel-sol transition (60 °C), and remolding ability, while the natural polyphenols provided potential antibacterial properties. These versatile materials can be anticipated to open up new prospects for the rational design of polyphenol-based cellulosic hydrogels for different biomedical applications.
Assuntos
Nanocompostos , Urocordados , Animais , Celulose/farmacologia , Celulose/química , Nanogéis , Hidrogéis/farmacologia , Hidrogéis/química , Antibacterianos/farmacologiaRESUMO
After several decades of development in the field of near-infrared (NIR) dyes for photothermal therapy (PTT), indocyanine green (ICG) still remains the only FDA-approved NIR contrast agent. However, upon NIR light irradiation ICG can react with molecular oxygen to form reactive oxygen species and degrade the ICG core, losing the convenient dye properties. In this work, we introduce a new approach for expanding the application of ICG in nanotheranostics, which relies on the confinement of self-organized J-type aggregates in hydrophobic protein domains acting as monomer depots. Upon the fast photobleaching, while the dye is irradiated, this strategy permits the equilibrium-driven monomer replacement after each irradiation cycle that radically increases the systems' effectivity and applicability. Gadolinium-doped casein micelles were designed to prove this novel concept at the same time as endowing the nanosystems with further magnetic resonance imaging (MRI) ability for dual-modal imaging-guided PTT. By teaching a new trick to a very old dog, the clinical prospect of ICG will undoubtedly be boosted laying the foundation for novel therapeutics. It is anticipated that future research could be expanded to other relevant J-aggregates-forming cyanine dyes or nanocrystal formulations of poorly water-soluble photosensitizers.
Assuntos
Corantes , Nanopartículas , Verde de Indocianina , Fototerapia , Nanomedicina TeranósticaRESUMO
Topical administration to the eye for the treatment of glaucoma is a convenient route because it increases the patient comfort. Timolol can efficiently diminish the intraocular pressure (IOP) of the eye; however the topical application as a solution of timolol maleate (TM) has poor therapeutic index and presents severe side effects. The encapsulation of timolol in nanomaterials has appeared as a technology to increase its residence time in the eye thus achieving a sustained release and consequently diminishing the doses of this drug and their number. The preparation of nanogels (NGs) based on N-isopropylacrylamide (NIPA) and acrylic acid (AAc), easily synthesized by precipitation/dispersion free radical polymerization, is reported in this paper. Such NGs presented excellent dispersability in eye simulated fluid and ideal size for topical application. NGs can load efficiently timolol through ionic interaction, and the in vitro release showed that NGs deliver timolol in a sustained manner. In vivo sustained efficacy of the NGs-timolol nanoformulations was demonstrated in rabbit's glaucoma model, in which the IOP could be diminished and maintained constant for 48 h with only one application. Overall, the synthesized NGs in combination with timolol have potential as drug delivery system for glaucoma therapy.
Assuntos
Glaucoma , Timolol , Anti-Hipertensivos , Sistemas de Liberação de Medicamentos , Glaucoma/tratamento farmacológico , Humanos , Pressão Intraocular , NanogéisRESUMO
In this work, we report the synthesis of graft copolymers based on casein and N-isopropylacrylamide, which can self-assemble into biodegradable micelles of approximately 80 nm at physiological conditions. The obtained copolymers were degraded by trypsin, an enzyme that is overexpressed in several malignant tumors. Moreover, graft copolymers were able to load doxorubicin (Dox) by ionic interaction with the casein component. In vitro release experiments showed that the in situ assembled micelles can maintain the cargo at plasma conditions but release Dox immediately after their exposition at pH 5.0 and trypsin. Cellular uptake and cytotoxicity assays revealed the efficient delivery to the nucleus and antiproliferative efficacy of Dox in the breast cancer cell line MDA231. Both delivery and therapeutic activity were enhanced in presence of trypsin. Overall, the prepared micelles hold a great potential for their utilization as dual responsive trypsin/pH drug delivery system.
Assuntos
Acrilamidas/química , Antineoplásicos/química , Caseínas/química , Doxorrubicina/química , Portadores de Fármacos/química , Polímeros/química , Temperatura , Antineoplásicos/farmacologia , Transporte Biológico , Linhagem Celular Tumoral , Portadores de Fármacos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Polímeros/metabolismoRESUMO
The development and characterization of a novel, gel-type material based on a dendronized polymer (DP) loaded with ciprofloxacin (CIP), and the evaluation of its possible use for controlled drug release, are presented in this work. DP showed biocompatible and non-toxic behaviors in cultured cells, both of which are considered optimal properties for the design of a final material for biomedical applications. These results were encouraging for the use of the polymer loaded with CIP (as a drug model), under gel form, in the development of a new controlled-release system to be evaluated for topical administration. First, DP-CIP ionic complexes were obtained by an acid-base reaction using the high density of carboxylic acid groups of the DP and the amine groups of the CIP. The complexes obtained in the solid state were broadly characterized using FTIR spectroscopy, XRP diffraction, DSC-TG analysis and optical microscopy techniques. Gels based on the DP-CIP complexes were easily prepared and presented excellent mechanical behaviors. In addition, optimal properties for application on mucosal membranes and skin were achieved due to their high biocompatibility and acute skin non-irritation. Slow and sustained release of CIP toward simulated physiological fluids was observed in the assays (in vitro), attributed to ion exchange phenomenon and to the drug reservoir effect. An in vitro bacterial growth inhibition assay showed significant CIP activity, corresponding to 38 and 58% of that exhibited by a CIP hydrochloride solution at similar CIP concentrations, against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. However, CIP delivery was appropriate, both in terms of magnitude and velocity to allow for a bactericidal effect. In conclusion, the final product showed promising behavior, which could be exploited for the treatment of topical and mucosal opportunistic infections in human or veterinary applications.
Assuntos
Antibacterianos/química , Ciprofloxacina/química , Dendrímeros/química , Portadores de Fármacos/química , Géis/química , Polímeros/química , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacologia , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Íons/química , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Coelhos , Reologia , Pele/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacosRESUMO
In this research, the potential of soy protein (SPI) based-films as drug delivery devices for ocular therapy was developed. Hence, crosslinked films with a natural and non-cytotoxic crosslinking agent, genipin (Gen), coated with poly(lactic acid) (PLA), were prepared. Filmogenic solutions were loaded with timolol maleate (TM) as a model drug, to be used as drug delivery devices, a novel application for this material. The mechanical properties of the films were studied, observing that with the presence of PLA coating, more rigid materials with improved properties were obtained. Furthermore, the release behavior of TM was evaluated in aqueous medium, it being influenced by the degree of film crosslinking. Furthermore, it was determined that PLA coating decreased TM release rate compared to that of uncoated films. Similarly, this behavior was observed via indirect estimation of the release by assessing the hypotensive effectiveness of the films by in-vivo assays. Through intraocular pressure (IOP) determination tests in rabbits, it was demonstrated that, through the use of high crosslinked and coated films, a significant decrease in IOP could be achieved for prolonged time periods. These results suggest that the use of soy protein-based films as drug delivery systems is highly suitable.